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This dissertation presents three essays. The first essay finds that

investment strategies which generate “alphas” become endogenously

risky by acquiring “betas” with respect to shocks that institutional ar-

bitrageurs are exposed to. This essay provides both theoretical and

empirical arguments. The second essay finds that exogenous shocks

to liquidity demand cause a variation in the reward for aggregate liq-

uidity provision. To draw this conclusion, this essay uses the daily

temperature variation within the summers of the late 19th to early 20th

century as a novel proxy for shocks to liquidity demand. The third es-

say finds that the GDP growth following an exogenous tax change that

barely failed to become law is zero. This finding supports the narra-

tive approach to the estimation of tax multipliers taken by Romer and

Romer (2010).
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Chapter I.
Turning Alphas into Betas: Arbitrage and Endogenous

Risk



1. Introduction

Asset pricing “anomalies” are investment strategies with high expected returns

but low identifiable risks. These anomalies—such as value and momentum—first

gained widespread recognition among finance academics and investment man-

agers in the early 1990s.1 Since then, arbitrageurs such as hedge funds have allo-

cated growing amounts of capital to these anomalies. As a result, the abnormal

returns on these anomalies have fallen, but have not completely disappeared.2

What prevents arbitrageurs from completely eliminating anomaly returns? Are

anomalies commonly exposed to hidden fundamental risks, so that the remaining

anomaly returns represent fair compensation for these hard-to-measure risks? Or

have anomalies become increasingly exposed to “endogenous risks” because of

the very fact that many arbitrageurs are attempting to exploit them?

In this paper, I argue both theoretically and empirically that arbitrage activity

exposes asset pricing anomalies to endogenous risks associated with the act of

arbitrage. The emergence of these endogenous risks means that anomaly returns

may survive in equilibrium even when the amount of arbitrage capital becomes

large.

My key contribution is to draw out the implications of this endogenous risk

view for the cross-section of “anomaly assets,” long-short portfolios that exploit

asset pricing anomalies. Specifically, if demand curves for anomaly assets slope

downward, the prices of anomaly assets comove with shocks to arbitrageur capi-

tal. This endogenous comovement is especially large for an anomaly with a large

latent mispricing—abnormal return in the absence of arbitrageurs—since it at-

1Fama and French (1992, 1993, 1996) and Jegadeesh and Titman (1993) ignited this interest.
However, anomalies such as size (Banz, 1981) and value (Rosenberg, Reid, and Lanstein, 1985)
were documented earlier.

2McLean and Pontiff (2016) find an average 32% decline in the returns of 97 anomalies after
their publication. Chordia, Subrahmanyam, and Tong (2014) also find that anomaly returns have
not completely disappeared.
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tracts correspondingly more arbitrage capital. This way, arbitrage turns assets

with high “alphas” into assets with high endogenous “betas.” This key insight

allows me to develop cross-sectional tests that have more power than pure time-

series tests.

To formalize my argument, I develop a model in which arbitrageurs can exploit

many anomalies that differ solely in the degree of the latent mispricing that would

prevail without arbitrageurs. In my three-period model, there is a continuum of

anomaly assets with the same expected cash flow at the final date (time 2). A set of

behavioral investors have a downward-sloping demand curve for each anomaly

asset at times 0 and 1. Critically, behavioral investors undervalue the anomaly

assets’ cash flow, and the degree of undervaluation—the latent mispricing—differs

across anomalies.

Arbitrageurs in my model are risk-neutral but face a stochastic funding con-

straint at time 1 that generates exogenous variation in the capital that they can

deploy. As arbitrageur funding at time 1 improves, arbitrageurs devote greater

capital to anomaly assets, raising their equilibrium prices. From the perspective of

arbitrageurs at time 0, the existence of the stochastic funding constraint means that

anomaly prices comove with their capital at time 1. And, crucially, this comove-

ment is stronger for anomalies with higher degrees of latent mispricing. Since

arbitrageurs want to hedge their time-1 capital shocks, this makes the more mis-

priced anomalies endogenously riskier for arbitrageurs to hold at time 0 (Merton,

1973). As a result, in equilibrium, anomalies with greater latent mispricing must

offer higher endogenous risk compensation from time 0 to time 1.

In summary, in my model, arbitrage activity necessarily exposes anomaly assets

to endogenous risks. These endogenous risks mean that anomaly returns persist

in equilibrium. And these endogenous risks imply that an “intermediary asset

pricing” model can explain the cross-section of anomaly expected returns: they

line up with the anomaly’s exposure to arbitrageur funding shocks even though
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the anomaly asset has no fundamental link to those shocks.

The model makes three key predictions about the cross-section of anomaly as-

sets. First, anomalies with greater latent mispricing become more exposed to en-

dogenous risk—i.e., larger αs turn into larger βs with respect to the funding condi-

tions of arbitrageurs (Proposition 1). Second, this endogenous risk of an anomaly

is explained by the amount of arbitrageur capital dedicated to the anomaly—i.e.,

arbitrageur funding βs line up with anomaly-level measures of arbitrage activ-

ity (Proposition 2). Third, an anomaly’s exposure to endogenous risk explains

its expected return in equilibrium—i.e., arbitrageur funding βs can “price” the

cross-section of anomalies (Proposition 3).

I test the model’s three main predictions using data on 34 equity anomaly as-

sets from 1972 to 2015. Splitting the sample period in half, I proceed under the

assumption that the pre-1993 period featured little arbitrage on anomalies whereas

the post-1993 period features more arbitrage. I measure the funding conditions

of arbitrageurs using the leverage of security broker-dealers, similar to the mea-

sure of financial intermediary funding conditions used in Adrian, Etula, and Muir

(2014). For main empirical analyses, I use the generalized method of moments

(GMM) to obtain conservative standard errors for the test parameters.

My empirical tests support the model’s predictions. In the pre-93 sample,

anomalies generated large long-short returns but had little exposure to arbitrageur

funding shocks. In the post-93 sample, however, as arbitrageur capital has flowed

into anomaly assets, anomaly returns have fallen while their endogenous expo-

sures to arbitrageur funding shocks have risen.And, consistent with the cross-

sectional prediction of Proposition 1, an anomaly’s latent mispricing—its pre-93

return—predicts its subsequent endogenous risk—its post-93 beta with respect to

arbitrageur funding ). Furthermore, as predicted by Proposition 2, these post-93

funding betas are explained by anomaly-specific arbitrage capital inferred from

short interests.
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Consistent with the intermediary asset pricing logic of Proposition 3, the post-93

expected returns of different anomalies line up with their endogenous risks mea-

sured using post-93 betas with respect to arbitrageur funding. The intercept of the

cross-sectional regression is not zero but positive, which is predicted by the model:

anomaly assets generate risk-adjusted returns above the risk-free rate whenever

arbitrage capital is insufficient to price all anomaly assets correctly. Interestingly,

the price of risk estimated in the pooled period of 1972-2015 is larger than that

estimated in the post-93 period, when arbitrageurs have become more important.

This is because anomalies with large funding betas and large equilibrium returns

in the post-93 period had even larger returns in the pre-93 period before arbitrage

began. The funding betas of all anomalies, however, were close to zero in the pre-

93 period. As a result, pooling the two periods increases the spread of returns and

decreases the spread of betas, generating an upward bias in the estimated price of

risk.

Additional empirical tests support auxiliary implications of the model. First,

treating the long and short sides of an anomaly as separate assets, I show that

a unit of pre-93 abnormal return turns into a larger post-93 endogenous risk on

the short side. This is consistent with the view that short sides of anomalies are

primarily traded by leveraged arbitrageurs such as hedge funds but long sides

of anomalies are accessible to a wider set of investors. Second, I find that the

covariation between anomaly returns and arbitrageur funding conditions occurs

only when arbitrageurs are likely to be constrained, consistent with the model’s

prediction that arbitrageurs exert price pressure on anomalies only when they are

constrained (Proposition 4). Finally, I show that using the equity market-neutral

index return from Hedge Fund Research (HFR) to measure shocks to arbitrageur

capital delivers results similar to those obtained using my proxy for arbitrageur

funding shocks.

What alternative explanations might account for my main findings? Suppose
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that anomalies with high average returns are exposed to some fundamental—as

opposed to endogenous—risk factor that, for whatever reason, has become more

correlated with arbitrageur funding shocks in recent years. In this case, an anomaly’s

pre-93 mean return would appear to predict its post-93 arbitrageur funding beta,

generating my key “αs into βs” result. If anomalies’ returns were driven by fun-

damental risks of this sort, one would expect the underlying firms’ cash flows to

covary with arbitrageurs funding shocks. To examine this possibility, I examine

whether anomaly assets’ cash flows covary with arbitrageur funding shocks, using

the return on book equity to measure cash flows as in Campbell and Vuolteenaho

(2004), and find no evidence that the anomaly assets have fundamental cash-flow

exposures to arbitrageur funding shocks.

Implications for the literature. This paper tests cross-sectional predictions of

the idea that the act of arbitrage makes mispriced assets endogenously risky. First

formalized by Shleifer and Vishny (1997),3 this idea has been a central explana-

tion for the occurrence of apparent arbitrage opportunities and has been extended

to show that the act of arbitrage induces various forms of instability in finan-

cial markets.4 Empirical tests of the idea have relied on time-series variation in

arbitrage capital and the ability of an arbitrageur-related risk factor to explain

anomaly returns. For instance, Frazzini and Pedersen (2014) show that the “bet-

ting against market beta” portfolio realizes a low return when funding constraints

3Although Shleifer and Vishny (1997) use noise traders to generate shocks to arbitrage capital,
the specific source of the arbitrage capital shocks is unimportant. As pointed out in Shleifer (2000),
the endogenous risk arises whenever arbitrageurs depend on external (debt or equity) capital,
which prevents them from raising more capital when their capital level falls and the mispricing
that they bet against widens.

4Documented examples of apparent arbitrage opportunities include price divergence in
Siamese-twin stocks (Rosenthal and Young, 1990; Froot and Dabora, 1999), negative stub values
(Mitchell, Pulvino, and Stafford, 2002; Lamont and Thaler, 2003), and on-the-run vs. off-the-run
bond spreads (Amihud and Mendelson, 1991; Warga, 1992; Krishnamurthy, 2002). The instabilities
include contagion (Kyle and Xiong, 2001), fire sales (Gromb and Vayanos, 2002; Morris and Shin,
2004; Allen and Gale, 2005), liquidity spirals (Brunnermeier and Pedersen, 2009), and crash risks
(Stein, 2009).
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tighten, highlighting the endogenous link between the amount of arbitrage capital

and the prices of arbitraged assets.5 Drechsler and Drechsler (2016) show that

the cheap-minus-expensive-to-short (CME) portfolio, interpreted as the portfolio

of aribtrageurs who focus on shorting, explains the returns on eight prominent

equity anomalies.6 My paper complements these findings by testing a set of new

cross-sectional implications of the endogenous-arbirage-risk idea.

This paper’s findings suggest that, from arbitrageurs’ point of view, the eq-

uity anomalies represent mispricings turned into endogenous risks, contributing

to the debate on the nature of asset pricing anomalies.7 This complements the

time-series evidence that anomaly returns have decayed due to increased arbitrage

activity following improved liquidity (Chordia, Subrahmanyam, and Tong, 2014)

and academic publication (McLean and Pontiff, 2016), as well as the evidence that

the return correlation between the top and bottom deciles of an anomaly falls af-

ter its academic publication (Liu, Lu, Sun, and Yan, 2015). Although my empirical

tests focus on equity anomalies, my predictions apply to other asset classes. Inter-

estingly, Brunnermeier, Nagel, and Pedersen (2009) observe that more profitable

currency carry trades are subject to higher crash risks because they attract more

arbitrage capital.

Finally, this paper proposes the origin of intermediary asset pricing betas. In-

termediary asset pricing theories posit that, in the presence of financial frictions,

shocks specific to financial intermediaries carry a risk premium (Gertler and Kiy-

5See Gârleanu and Pedersen (2011), Chordia, Subrahmanyam, and Tong (2014), Akbas, Arm-
strong, Sorescu, and Subrahmanyam (2015), and Huang, Lou, and Polk (2016) for additional time-
series evidence.

6As I discuss in Section 2, they also solve a model of arbitrageurs that shares many similarities
to mine.

7See, e.g., Fama and French (1993); Lakonishok, Shleifer, and Vishny (1994); Daniel and Tit-
man (1997); Davis, Fama, and French (2000); Campbell, Polk, and Vuolteenaho (2010); and Kozak,
Nagel, and Santosh (2015). Some papers attribute anomaly returns to transaction costs (e.g., Ko-
rajczyk and Sadka, 2004; Novy-Marx and Velikov, 2016), although there is also an opposing view
(e.g., Frazzini, Israel, and Moskowitz, 2015).
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otaki, 2010; He and Krishnamurthy, 2012, 2013; and Brunnermeier and Sannikov,

2014). Adrian, Etula, and Muir (2014) test this empirically, finding that inter-

mediary funding shocks inferred from the leverage of broker-dealers explain the

returns on equity portfolios sorted by size, value, and momentum and bond port-

folios sorted by maturity.8 However, existing work on intermediary asset pricing

offers no explanation on the origin of betas—why some assets have larger expo-

sures to financial sector shocks than others. I show that certain assets have high

betas with respect to financial sector shocks because those assets have large latent

mispricing and attract large arbitrage capital.

Outline. The paper proceeds as follows. Section 2 theoretically examines a

model of arbitrageurs exploiting differently mispriced anomalies subject to a stochas-

tic funding constraint. Section 3 empirically tests the model’s implications using

the cross-section of anomaly assets. Section 4 presents additional empirical anal-

yses. Section 10 concludes.

8He, Kelly, and Manela (2016) and Kozak, Nagel, and Santosh (2015) also test intermediary
asset pricing.
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2. A model of arbitrageurs trading multiple assets

In this section, I develop a model in which arbitrageurs can exploit many differ-

ent anomalies that differ solely in the degree of the latent mispricing that would

prevail without arbitrageurs. The model shows that arbitrage activity exposes

anomaly assets to endogenous risks and that this endogenous risk is higher for an

anomaly with greater latent mispricing. The model generates additional testable

predictions about the cross-section of anomaly assets.

2.1. Model setup

Time horizon, assets, and investors. Consider an economy with three time pe-

riods, t = 0,1,2. The economy has two types of assets: a risk-free asset and a

continuum of risky assets which I call “anomaly assets.” The risk-free asset is in

infinite supply with zero interest rate. An anomaly asset, indexed by j ∈ [0,1], is a

claim to an expected time 2 cash flow of

v > 0 (1)

and is in zero net supply. The assumption of no cash-flow news at t = 0,1 and the

zero risk-free rate normalization imply that the fundamental value of the anomaly

assets to risk-neutral investors is always v.

There are two types of investors: “arbitrageurs” and “behavioral investors.”

Behavioral investors generate mispricings in anomaly assets. They require, for

an exogenous reason, positive expected returns for holding the anomaly assets,

generating a downward price pressure. Risk-neutral arbitrageurs recognize that

the anomaly assets have a fundamental value of v and trade against mispricings.

Mispricing. Anomaly assets differ only in the extent of behavioral investors’

mispricing. At each t ∈ {0,1}, behavioral investors’ demand for anomaly asset j,
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in units of wealth, is

Bj,t =
Et
[
rj,t+1

]
r

− j, (2)

where Et
[
rj,t+1

]
denotes asset j’s conditional expected return and r is a positive

constant denoting the most-mispriced asset’s expected return in the absence of

arbitrage.

This demand curve implies that (i) behavioral investors require a positive ex-

pected return for holding an anomaly asset and that (ii) an asset’s abnormal re-

turn, given any fixed amount of counteracting arbitrage position, increases with

the index j. To see (i), to clear the market with just the behavioral investors

(Bj,t = 0), the expected return on any asset j must be positive:

Et
[
rj,t+1

]
|(Bj,t = 0) = rj > 0 (3)

In the rest of the paper, I refer to this expected return in the absence of arbitrage

capital as the anomaly’s “latent mispricing.” To see (ii), suppose now that arbi-

trageurs take the same wealth position x > 0 on each anomaly asset. Then, to clear

the market (x + Bj,t = 0 ), asset j’s expected return is r (j− x):

Et
[
rj,t+1

]
|(x + Bj,t = 0) = r (j− x) (4)

The derivative of r (j− x) with respect to j is r > 0, implying that an asset’s ex-

pected return, holding arbitrage position fixed, increases with j.

Within each anomaly asset, the market-clearing expected return falls as arbi-

trage position increases. The slope of (4) with respect to x is −r for all assets,

implying that the marginal effect of arbitrage position on the expected return is

the same for all anomalies.

Arbitrageurs. The economy has a continuum of identical, risk-neutral arbitrageurs

with aggregate mass µ. They live through all three periods and seek to maxi-
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mize their expected wealth at time 2. Arbitrageurs have limited capital. At time

t ∈ {0,1}, an arbitrageur’s deployable capital kt is the sum of its own wealth wt

and a short-term funding ft:

kt = wt + ft (5)

The wealth evolves according to

wt = wt−1 +
∫ 1

0
rj,txj,t−1dj, (6)

where rj,t denotes the return on asset j at time t and xj,t is the arbitrageur’s po-

sition on asset j. I normalize the time-0 wealth of an individual arbitrageur to be

w0 = 1 so that µ is the aggregate arbitrageur wealth at time 0.

Short-term (uncollateralized) funding is available to each arbitrageur at the risk-

free rate of zero but is capped at a stochastic funding constraint ft. Since part of

the funding not used for an arbitrage activity can be invested at the zero interest

rate, I assume for notational convenience that arbitrageurs always borrow to the

limit ft. As we will see, the aggregate arbitrage capital µkt (“arbitrage capital”)

will be the only state variable in the model.9

Arbitrageurs can take long or short positions on anomaly assets. However, they

are required to put up a margin of one for each trade, which prevents them from

levering up through a long-short trade.10 An arbitrageur’s capital constraint is,

therefore, ∫ 1

0

∣∣xj,t
∣∣dj ≤ kt (7)

Arbitrageurs’ time-1 wealth may become negative. In this case, arbitrageurs are

9To clarify, µ captures the mass of arbitrageurs that changes over a long horizon; µ = 0 indicates
the period before extensive arbitrage and µ > 0 indicates the period with extensive arbitrage. In
contrast, variation in kt captures the amount of arbitrageur capital that varies over a short horizon
during which the mass of arbitrageurs µ is fixed. Hence, for instance, I am assuming that kt was
low during the recent financial crisis although the mass of arbitrageurs µ remained constant.

10This ensures that the short-term funding is the only channel for levering up.
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assumed to exit the economy, taking full responsibility for the liability incurred

(unlimited liability) and paying any additional costs of default.

Equilibrium. Prices are determined in a competitive equilibrium. Arbitrageurs

make optimal investment decisions taking current prices and their expectations

of future prices as given, and those prices clear all asset markets. Formally, an

equilibrium is defined as follows:

Definition 1. An equilibrium is the price functional p, arbitrageur position x, and

behavioral investor demand B such that

(i) x is a solution to the arbitrageur’s optimization problem given price p and

capital constraint (7).

(ii) Price p clears the market: µx+B= 0.

I solve for equilibrium prices iteratively, beginning with time 1 and moving to

time 0. I look for a symmetric equilibrium in which all individual arbitrageurs

make identical choices.

Remarks on modeling choices. This model is a simple way to deliver intuitions

on how arbitrageurs trade multiple anomaly assets and what testable predictions

this generates. Most of the modeling choices, however, are not crucial, and alter-

native specifications generate similar results.

The risk neutrality of arbitrageurs is one such assumption. I use risk neutrality

for modeling purposes for two reasons: it most clearly highlights the emergence of

endogenous risk and it is the framework used in Shleifer and Vishny (1997) and

Brunnermeier and Pedersen (2009), important precursors to my model. Under

the risk neutrality assumption, the anomaly assets offer pure arbitrage opportuni-

ties in the absence of arbitrage capital since they generate expected returns above

the risk-free rate. However, once arbitrageurs trade the anomaly assets with a

nonnegligible amount of capital, they cause the prices of the assets to comove
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with the level of arbitrage capital, and this endogenous comovement becomes risk

through arbitrageurs’ intertemporal hedging motive (Merton, 1973). Crucially, a

more-mispriced anomaly becomes endogenously riskier since its greater exposure

to arbitrage capital makes it a worse instrument for hedging (that is, it realizes a

worse return than other assets when arbitrage capital falls and investment oppor-

tunities improve).11

With risk aversion, a more-mispriced anomaly still becomes endogenously riskier,

but the mechanism is different. Under log utility, for instance, an asset’s risk is

measured by its beta with respect to portfolio return. Since a more-mispriced

anomaly offers a larger expected return, arbitrageurs assign a larger portfolio

weight to the anomaly, which gives it a larger beta with respect to the portfo-

lio return.12 In this way, different betas arise because of the different portfolios

weights arbitrageurs assign to differently mispriced assets, and these betas ex-

plain the expected returns the anomaly assets earn in equilibrium. The model in

the online appendix of Drechsler and Drechsler (2016) has this feature and shows

a positive relationship between the degree of an asset’s underpricing and its beta

with respect of arbitrageur portfolio return.

The source of variation in arbitrage capital (µkt) in this model is the stochas-

tic funding constraint of arbitrageurs ( ft). However, any alternative source of

shock that generates variation in arbitrageur capital—the key state variable in the

model—generates analytically identical results. For instance, instead of a shock

to the constraint on uncollateralized borrowing, one may use a shock to an ar-

bitrageur’s margin requirement by making it stochastic (Gârleanu and Pedersen,

11When the investor’s relative risk aversion γ is below 1, as in the case of risk-neutrality, a hedge
asset is the one whose return covaries positively with investment opportunities. This is because
the speculative motive dominates.

12In the language of Shleifer and Vishny (1997), I assume that different anomaly assets are
subject to different levels of pessimistic sentiments but not different volatilities of sentiment. This
way, all anomaly assets would have the same fundamental risks (inherent volatilities), but they
attain different endogenous risks (betas with respect to arbitrageur portfolio return).

14
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2011; Brunnermeier and Pedersen, 2009). Or one may shut down the borrowing

channel altogether and use a shock to arbitrageur wealth (wt) owing to interim

cash-flow news, noise trades (that is, stochastic behavioral investor sentiment; the

current model has constant sentiment), or stochastic investor flows to generate

arbitrage capital shocks.13

To describe behavioral investors, I use demand curves rather than more primi-

tive preferences. This allows me to abstract from the underlying cause of a mis-

pricing, which is irrelevant for the rest of the analysis.14 The demand curves may

be generalized to have different parameters govern the latent mispricing (rj) and

the marginal effect of arbitrageur position on expected return (r). Introducing a

new parameter for this purpose does not affect the model’s analytical results.15

2.2. Two benchmark scenarios: No arbitrage and a complete

arbitrage

Before considering the more interesting case of limited arbitrage due to endoge-

nous risks, I consider two benchmark scenarios.

13Shleifer and Vishny (1997) emphasize the wealth channel of arbitrageur capital. Although not
emphasized, the same wealth channel exists in this model; a negative shock to funding ft also
generates a negative wealth shock wt by lowering the values of anomaly assets in the arbitrageur’s
portfolio. The difference is that the source of a negative wealth shock is the funding condition of
arbitrageurs rather than the sentiment of noise traders.

14Still, in the Appendix, I provide one way to endogenize the demand curves through hetero-
geneous beliefs.

15Furthermore, although the demand curves are stated in terms of required expected returns,
they can be restated in a more conventional form with prices on the left-hand side:

pj,t =
Et
[
pj,t+1

]
1 + r

(
j + Dj,t

)
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The no-arbitrage case (µkt ≤ 0)

The first is the “no-arbitrage” case in which arbitrageurs have zero or negative

aggregate capital at all times (µk0,µk1 ≤ 0). As analyzed during the model setup,

this induces the behavioral investors alone to price all assets, and the anomaly

assets earn expected returns equivalent to their latent mispricings, Et
[
rj,t+1

]
= rj.

The anomaly asset prices at time 0 and time 1 are pj,0 = v/ (1 + rj)2 and pj,1 =

v/ (1 + rj), respectively. The prices are deterministic and do no depend on the

specific realization of arbitrageur capital.

The complete-arbitrage case (µkt ≥ 1/2)

At the other extreme is the “complete-arbitrage” case. Since arbitrageurs are risk-

neutral, they competitively push all expected returns to zero when aggregate arbi-

trageur capital is large. If this is guaranteed to happen at times 0 and 1, the prices

of anomaly assets equal their fundamental value v: pj,0 = pj,1 = v. The prices are

deterministic and do not depend on the specific realization of arbitrage capital.

A complete arbitrage occurs if aggregate arbitrage capital µkt is 1/2 or above

almost surely both at time 0 and time 1. According to (4), the arbitrageur position

required to push asset j′s expected return to zero is j. Integrating this over all

assets,
∫ 1

0 j dj, gives 1/2 as the aggregate arbitrage capital required to push all

assets’ expected returns to zero.

The complete-arbitrage case seems to arise in the actual stock market. These

are times when arbitrage capital is persistently sufficient to counteract all mispric-

ings. In these times, anomaly assets have no endogenous risks and generate zero

risk-adjusted returns. This point is reiterated theoretically in Proposition 4 and

analyzed empirically in Section 3.3.
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2.3. Limited arbitrage of multiple assets and the emergence of

betas

Now I consider the more interesting case in which arbitrage capital may not be

sufficient for a complete arbitrage at time 1. I first show that anomaly asset prices

at time 1 comove with arbitrage capital due to arbitrageur trading. This makes the

anomaly assets ex-ante risky from the perspective of arbitrageurs at time 0. This

risk is larger for an anomaly asset with a larger latent mispricing, as it is expected

to comove more strongly with arbitrage capital at time 1.

Equilibrium price at time 1 and endogenous risk

I first determine the prices of anomaly assets at time 1. Since arbitrageurs are

risk-neutral, the expected return on any asset arbitrageurs hold will be the same,

while the expected return on any asset arbitrageurs do not hold will be lower.

This implies that there is a marginal asset. This marginal asset is determined as

the point where the amount of capital needed to push down the expected return

on all exploited anomalies up to the latent mispricing of the marginal asset is the

amount of capital arbitrageurs have.

Let j∗1 ∈ [0,1] be the marginal asset. Since latent mispricing increases with j,

arbitrageurs hold assets (j∗1 ,1] and earn expected returns rj∗1 from them. This ex-

pected return implies that behavioral investors take a position Bj,1 = j∗1 − j < 0

on asset j ∈ (j∗1 ,1], meaning arbitrageurs have a position xj,1 = −Bj,1 = j− j∗1 > 0

on j ∈ (j∗1 ,1]. Integrating this position of arbitrageurs over all exploited assets

gives the amount of capital arbitrageurs must have to make j∗1 the marginal asset:∫ 1
j∗1
(j− j∗1)dj = 1

2 (1− j∗1)
2. Equating this with the actual capital of arbitrageurs,

µk1, gives the marginal asset when aggregate arbitrageur capital is in the inter-

mediate region (µk1 ∈ [0,1/2]). Below this region, no arbitrage occurs, so j∗1 = 1.

Above this, arbitrageur capital has no further correcting role in anomaly assets,
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and j∗1 = 0. The unexploited assets [0, j∗1) generate expected returns equal to their

latent mispricings.16

In summary, an anomaly asset’s equilibrium expected return at time 1 is

E1
[
rj,2
]
=

v
pj,1
− 1 =


rj∗1

rj

if j ≥ j∗1

if j ≤ j∗1

, (8)

where j∗1 is the marginal asset given by

j∗1 =


1−

1√
2µk1

0

if µk1 < 0

if µk1 ∈
[
0, 1

2

]
if µk1 >

1
2

(9)

Since E1
[
rj,2
]
= v/pj,1 − 1, translating the expected returns into prices gives the

following:

Lemma 1. (Equilibrium price at t = 1). Equilibrium price of anomaly asset j at time

t = 1 is

pj,1 =


v

1+rj

v
1+rj∗1

if j ≤ j∗1

if j ≥ j∗1

(10)

Proof. See the Appendix.

Since arbitrageurs equalize expected returns from all exploited assets, the prices

of all exploited assets are the same. Figure 1 illustrates the equilibrium time 1

prices of anomaly asset j and anomaly asset j′ > j.

How does arbitrage capital move the prices of different assets? The intensive

margin is identical for all assets. When their capital changes, arbitrageurs rebal-

ance their portfolios to ensure that the prices of all exploited assets equal. Hence,

16That variation in arbitrageur capital has a meaningful effect on asset prices only in the inter-
mediate region of capital is an important feature of Gromb and Vayanos (2009).
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Figure 1: Price of Anomaly Asset j at Time 1
The figure plots the time-1 price of anomaly asset j, pj,1, as a function of total arbitrage capital µk1.

The price is given by pj,1 = max
{

v
1+r̄j ,

v
1+r̄j∗1

}
, where j∗1 = min

{
0,1−

√
2µk1

}
is the marginal asset

determined by the availability of arbitrageur capital µk1.

a change in arbitrage capital has the same effect on the prices of assets while

they are being exploited. The extensive margin, however, applies differently. The

larger the latent mispricing, the lower the level of capital from which arbitrageurs

begin exploiting the asset. This makes the more-mispriced asset comove with ar-

bitrage capital in a wider region of arbitrage capital. As the reader will see, this

will make the more-mispriced asset ex-ante riskier since a larger price covariance

with arbitrage capital means a more negative price covariance with the arbitrageur

marginal value of wealth.

Since arbitrageurs maximize the expected wealth at time 2, their marginal value

of wealth—the value of an additional unit of wealth at time 1—is the gross ex-

pected return the extra wealth will generate. This means that the gross expected

return earned by exploited assets, 1 + rj∗1 , is the arbitrageurs’ marginal value of

wealth at time 1. However, arbitrageurs’ marginal value of wealth is not well-
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defined if they have negative realized wealth and exit the financial market (Brun-

nermeier and Pedersen, 2009). I assume that, in the event of a default, an arbi-

trageur incurs a marginal bankruptcy cost of c for each additional dollar of default

in addition to taking full responsibility for the negative realized wealth. I then im-

pose a restriction on the value of c to make an additional unit of wealth more

valuable in the default region than in any part of the non-default region.17 Hence,

the marginal value of wealth is as follows:

Remark 1. (Arbitrageur’s marginal value of wealth at t = 1). An arbitrageur’s

marginal value of wealth at time 1, denoted Λ1, is

Λ1 =


1 + c

1 + rj∗1

if k1 < 0

if k1 ≥ 0
, (11)

where j∗1 is the marginal asset specified in (9) and where I assume c≥ r so that the

marginal value of wealth is higher in the default region.

Thus, marginal value of wealth decreases as arbitrage capital increases. This

means that anomaly assets, which covary positively with arbitrage capital, covary

negatively with the arbitrageur marginal value of wealth. This makes anomaly

assets risky from the perspective of arbitrageurs at time 0. The risk is larger for

a more-mispriced asset (higher j) with a larger covariance with arbitrage capital.

This is summarized as Lemma 2.

Lemma 2. (Anomaly asset’s endogenous risk). An anomaly asset is risky as indicated

by a negative price covariance with the arbitrageur’s marginal value of wealth:

Cov0
(

pj,1,Λ1
)
≤ 0 ∀j (12)

17Without this assumption of c ≥ r, the marginal value of wealth is lower in the default region
than in some parts of the non-default region. This could make an asset that pays low in the state
of default and pays high in the state of non-default (e.g., the most mispriced asset j = 1) safer than
an asset that pays the same return in all states (the least-mispriced asset j = 0).
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Furthermore:

(i) This risk is endogenous, arising only if arbitrageurs have a positive mass in the market

so as to generate price pressure:

Cov
(

pj,1,Λ1
)
|µ=0 = 0 ∀j (13)

(ii) In the cross-section of assets j ∈ [0,1], the riskiness increases with an asset’s latent

mispricing:

∂Cov
(

pj,1,Λ1
)

∂ (rj)
=

∂Cov(pj,1,Λ1)
∂j

∂(rj)
∂j

≤ 0 (14)

Proof. See the Appendix.

Equilibrium price at time 0 and ex-ante pricing of endogenous risk

To find anomaly asset prices at time 0, I first find the arbitrageur’s value function.

Since each individual arbitrageur is small and risk-neutral, the arbitrageur’s value

function at time 0 is simply wealth multiplied by the marginal value of wealth,

Λ0w0. Since there is no time-0 consumption or discount, this quantity has to equal

the time-0 expectation of wealth multiplied by the marginal value of wealth at

time 1:

Λ0w0 = E0

[
Λ1

(∫ 1

0

pj,1

pj,0
xj,0dj + w0 −

∫ 1

0
xj,0dj

)]
(15)

An arbitrageur then maximizes this value function subject to a capital constraint,

∫ 1

0

∣∣xj,0
∣∣dj ≤ k0 (16)

I analyze the equilibrium price in the unconstrained and constrained cases sepa-

rately.
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Suppose first that k0 is large enough to make constraint (16) slack and arbi-

trageurs unconstrained. Then, taking the derivative of both sides of (15) with

respect to xj,0 gives E0 [Λ1] = E0
[
Λ1pj,1/pj,0

]
. Furthermore, taking the derivative

with respect to w0 gives Λ0 = E0 [Λ1].18 Hence,

pj,0 = E0

[
Λ1

E0 [Λ1]
pj,1

]
(17)

for all assets j ∈ [0,1]. Since arbitrageur trading at time 1 makes Cov0(Λ1pj,1) < 0

for j ∈ (0,1], even if arbitrageurs are unconstrained at time 0, they do not push the

price pj,0 all the way to E0
[
pj,1
]
.

Suppose now that k0 is small, in which case the constraint (16) binds and ar-

bitrageurs are constrained. Then, by (5) and (16), w0 = k0 − f0 =
∫ 1

0 xj,0dj − f0,

where I use the fact that arbitrageurs have non-negative exposures to anomaly

assets in equilibrium. Substituting w0 with
∫ 1

0 xj,0dj − f0 and taking the deriva-

tive of the both sides of (15) with respect to xj,0 gives the optimality condition

Λ0≥ E0
[
Λ1pj,1/pj,0

]
, which holds with equality if and only if the asset is exploited

by arbitrageurs at time 0 and thus has an interior solution in the arbitrageur’s op-

timization problem. Thus, the price of an exploited asset satisfies the fundamental

theorem of asset pricing:

pj,0 = E0

[
Λ1

Λ0
pj,1

]
(18)

On the other hand, an unexploited asset is priced solely by behavioral investors,

who require an expected return of r̄j:

pj,0 =
E0
[
pj,1
]

1 + rj
(19)

Conditions (18) and (19) imply that Λ0 is pinned down by the expectation of

18This martingale property Λ0 = E0 [Λ1] is a consequence of the zero risk-free rate assumption.
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returns on exploited assets multiplied by the marginal value of wealth at time 1:

Λ0 = max
j∈[0,1]

E0
[
Λ1
(
1 + rj,1

)]
(20)

Hence, arbitrageurs are constrained; they are not the marginal investor of all as-

sets. Instead, arbitrageur’s stochastic discount factor m1 = Λ1/Λ0 prices assets

only if they are held by arbitrageurs. Thus, unlike conventional pricing models,

arbitrageur pricing is expected to work only on assets that are traded by arbi-

trageurs.

The equilibrium conditions in both the unconstrained and constrained cases

imply that anomaly asset prices at time 0 decrease with j. If j′ < j′′, anomaly j′ is

not only subject to a larger mispricing in the absence of arbitrageurs, but is also

exposed to a larger endogenous risk. Thus, anomaly j′′ must be valued less than

anomaly j′.

This monotonicity of prices at time 0 makes the endogenous risk results in

Lemma 2 hold analogously with returns. Consider two assets j′ < j′′ so that j′′

has a larger latent mispricing than j′. Then, asset j′′ not only has a more-negative

price covariance with the marginal value of wealth at t = 1, but also has a lower

price at time 0. Since gross return is 1+ rj,1 = pj,1/pj,0, this necessarily means that

asset j′′ has a more negative return covariance with the marginal value of wealth

at time 1. This gives Proposition 1, which states Lemma 2 in terms of returns:

Proposition 1. (“Alphas” turn into “betas”). In the cross-section of anomaly assets,

an anomaly asset’s latent mispricing,

αj ≡ rj (21)

predicts its endogenous risk measured as the negative of the beta with the arbitrageur
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stochastic discount factor (SDF) m1 ≡ Λ1/Λ0:

β j ≡ −
Cov0

(
m1,rj,1

)
Var0 (m1)

(22)

That is,
∂β j

∂αj
> 0 (23)

Proof. See the Appendix.

Hence, anomaly assets’ risks—their betas with respect to SDF—arise endoge-

nously in this model. That asset betas arise endogenously is not surprising, given

that most nontrivial economies with multiple assets would imply different equi-

librium risks of the assets.19 The difference in this model, however, is that the

different risks are generated by arbitrage trading.20 To emphasize this point, I

show that the amount of arbitrage capital devoted to an asset is expected to be

larger for an asset with a larger β j. This is presented as Proposition 2.

Proposition 2. (Beta is explained by anomaly-specific arbitrage capital). β j in-

creases with the expected arbitrageur position in the asset:

∂β j

∂E0
[
xj,1
] ≥ 0 (24)

Proof. See the Appendix.

This suggests that anomaly-specific measures of arbitrage activity should explain

different amounts of endogenous risks in different anomaly assets.

19For instance, Zhang (2005) shows that value firms can have returns covaring more with the
SDF than growth firms if the adjustments in the investment-capital ratio are higher for value firms,
especially in bad times. Brunnermeier and Pedersen (2009) show that fundamentally more volatile
assets covary more with the speculator’s SDF since their market liquidity drops more quickly in
times of low liquidity.

20The emergence of the beta is perhaps most similar to high-margin securities attaining high
funding-liquidity risks owing to their large sensitivities to funding liquidity events (Gârleanu and
Pedersen, 2011).

24



Once arbitrageurs generate endogenous risks, they require a compensation for

these risks. This implies that an “intermediary asset pricing” should work on

anomaly assets if risk is measured by beta with respect to arbitrageur’s SDF. How-

ever, because limited capital can constrain arbitrageurs, the model makes a few

nonconventional predictions about pricing assets with the arbitrageur SDF. These

are summarized as Proposition 3.

Proposition 3. (“Intermediary asset pricing” with respect to arbitrageur’s SDF).

Suppose asset j is exploited by arbitrageurs at t = 0. Then, the asset’s beta with arbi-

trageurs’ stochastic discount factor Λ1/Λ0 explains its expected return:

E0
[
rj,1
]
=



r̄j

1
E0 [Λ1/Λ0]

− 1︸ ︷︷ ︸
zero-beta rate

+ λβ j︸︷︷︸
risk premium

if j is not exploited

if j is exploited
(25)

where

λ =
Var0 (Λ1/Λ0)

E0 [Λ1/Λ0]
(26)

β j = −
Cov0

(
rj,1,Λ1/Λ0

)
Var0 (Λ1/Λ0)

(27)

with E0 [Λ1/Λ0] = 1 if arbitrageurs are unconstrained (k0 large) and E0 [Λ1/Λ0] > 1 if

they are constrained (k0 small).

Proof. Rearranging (18) implies that exploited assets are priced according to 1 =

E0

[
Λ1Λ−1

0
(
1 + rj,1

)]
, so that 1= E0 [Λ1/Λ0]E0

[
1 + rj,1

]
+Cov0

(
Λ1/Λ0,rj,1

)
.

This gives

E0
[
rj,1
]
=

1
E0 [Λ1/Λ0]

− 1 + λβ j

If arbitrageurs are unconstrained, Λ0 = E0 [Λ1] so that the zero-beta rate

drops out. If arbitrageurs are constrained, Λ0 = maxj∈[0,1] E0
[
Λ1
(
1 + rj,1

)]
>
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E0 [Λ1] since otherwise, arbitrageurs are not optimally choosing the exploited

assets.

If arbitrageurs are constrained at time 0, some anomaly assets are exploited by

arbitrageurs while others are not. Hence, arbitrageurs are not the marginal in-

vestor of all assets, and choosing the exploited assets is important when estimat-

ing the asset pricing model; this is in contrast to Adrian, Etula, and Muir (2014),

who essentially assume that financial intermediaries are the marginal investor of

all assets. The expected return on an unexploited asset is its latent mispricing r̄j,

the expected return required by behavioral investors. The expected return on an

exploited asset has two components: a zero-beta rate that is common across all

exploited assets and a risk premium that is different for each exploited asset.

The zero-beta rate is above the risk-free rate of zero at time 0 if arbitrageur

capital is insufficient to “price” all anomaly assets correctly. This is because, in

the constrained case, arbitrageurs earn expected returns higher than the levels

that would just compensate for the risks that they face; that is, their risk-adjusted

returns are positive. Hence, unlike a conventional cross-sectional asset pricing

model that tests for a zero intercept, this model predicts that if arbitrageurs are

sometimes constrained and expose the prices of anomaly assets to comove with

their capital—if they form positive β j— we should also expect to see a positive

intercept in the cross-sectional regression.

What is the interpretation of the zero-beta rate? By definition, the difference

between the zero-beta rate and the prevailing risk-free rate represents the arbi-

trage profit arbitrageurs are generating from their investments. Although not

pursued in this paper, inferring the zero-beta rate from a cross-sectional regres-

sion of anomaly assets and relating it to the estimate of the price of risk may be

an interesting route for an arbitrageur-based asset pricing model to take.

Now I introduce Proposition 4, the last proposition of the model. The endoge-

nous risks generated by arbitrageurs arise only if arbitrageurs are “constrained”
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at time 1. This is when aggregate arbitrageur capital at time 1 is in the interme-

diate region µkt ∈ [0,1/2] so that the anomaly assets are mispriced and variation

in arbitrage capital generates price pressure on the anomaly assets. In particular,

if µkt > 1/2, all anomaly assets are already correctly priced so that variation in

arbitrageur no longer generates price pressure.

Proposition 4. (Betas arise during constrained times). Endogenous risk arises only

during constrained times of t = 1. That is,

Cov0
(
Λ1,rj,1|µk1 > 1/2

)
= 0

Cov0
(
Λ1,rj,1|µk1 < 1/2

)
> 0

(28)

for all j ∈ (0,1]. For this reason, if the funding condition follows a process f ∗t such that

f ∗0 > 1/2 and f ∗1 > 1/2 almost surely, then neither beta nor abnormal return arises:

β j = 0 and E0
[
rj,1
]
= 0 for all j ∈ [0,1] (29)

Proof. Follows from the price equation in Lemma 1 and the analysis in Section 2.2.

Empirically, I should observe that anomaly assets have zero endogenous risks and

zero abnormal returns in times when arbitrageurs have persistently large capital.

3. Empirical test of the model

In this section, I test the model’s predictions about the cross-section of anomaly

assets, using equity anomalies as the empirical counterparts of the differently

mispriced anomaly assets in the model. Equity anomalies provide a convenient

laboratory because they are easier to construct using publicly available data and

straightforward to compare to one another.21

21For instance, fixed-income arbitrage portfolios generated by Duarte, Longstaff, and Yu (2007)
use proprietary data and require a separate, nontrivial valuation model for each anomaly asset.

27



3.1. Test environment

Thirty-four equity anomalies as anomaly assets. The empirical counterpart of

the anomaly assets in the model are 34 equity anomaly assets. For each one,

I compute the time-series of quarterly value-weighted (VW) returns on a long-

short self-financed portfolio over the period 1972 to 2015. The required data are

downloaded from CRSP and Compustat.

I compute the long-short returns on each anomaly asset as follows. At the end

of each month from 1972 to 2015, I allocate all domestic common shares trading

on NYSE, AMEX, and NASDAQ into deciles based on an anomaly signal, such

as the book-to-market ratio, with decile breakpoints determined by NYSE-listed

stocks alone.22 Then, I calculate monthly value-weighted long-short return as the

difference between the VW returns on the top and bottom deciles of stocks.23 I

aggregate the monthly returns to the quarterly frequency to match the frequency

of the arbitrageur funding shock variable discussed below.

I use 34 distinct anomaly signals to construct the anomaly assets. These com-

prise 25 standard anomaly signals used in Novy-Marx and Velikov (2016), 6 industry-

adjusted signals, and 3 “behavioral” signals meant to exploit investors’ behavioral

biases.24 The construction of the signals is similar to that of Novy-Marx and

In contrast, equity anomaly portfolios can be readily constructed once the anomaly signals are
calculated.

22This ensures that the decile portfolios have comparable market capitalizations. For CRSP,
domestic common shares on NYSE, AMEX, and NASDAQ are stocks with share code 10 or 11 and
exchange code 1, 2, or 3.

23Two exceptions are beta arbitrage and idiosyncratic volatility strategies, for which the plain-
vanilla long-short portfolios have large negative exposures to the market portfolio. For these
two strategies, I compute returns that go long min

{
5,max

{
0, βBottom Decile/βTop Decile}} dollar of

the top decile and short one dollar of the bottom decile, where βTop Decile and βBottom Decile are the
value-weighted market betas of the top and bottom deciles. The market beta used here is calculated
at the end of each month using weekly returns in the previous one to three years, depending on
data availability. The market factor is downloaded from Kenneth French’s website on June 25,
2016.

24Out of 32 signals used in Novy-Marx and Velikov (2016), I exclude 7 for redundancy. For
example, I exclude the “ValMomProf” signal since it is simply the sum of a stock’s decile numbers
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Velikov (2016) and of Green, Hand, and Zhang (2016); where I deviate, it is so

that the signals resemble the actual signals arbitrageurs observe at the end of

each month. The online appendix provides more details on how I construct the

anomaly signals.

Table 1 lists the 34 anomaly assets along with their mean returns, volatilities,

and arbitrageur funding betas (which I will come back to once I discuss my proxy

for arbitrageur funding shocks) during the first-half of the sample period (1972Q1-

1993Q4, “pre-93”) and the second-half (1994Q1-2015Q4, “post-93”). Twenty-nine

of these have positive mean returns in the pre-93 sample, which I later use to

measure an asset’s latent mispricing—the abnormal expected return that would

prevail in the absence of arbitrageurs. For the five anomaly assets with negative

mean returns, I will assume that arbitrageurs flip the direction of their trades to

earn positive mean returns. There is some variation in the return volatility of the

anomalies, and the ones with larger mean returns tend to have larger volatilities.

Hence, it may be important to control for volatility in a regression that proxies

for an anomaly’s latent mispricing using the pre-93 mean return. I postpone the

discussion of the funding betas.

in the three univariate sorts based on value, momentum, and profitability.
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Table 1: Summary Statistics of Anomaly Assets by Sample Period
This table summarizes the 34 equity anomaly assets used in the empirical section. The abbrevi-
ations for the categories are: NMV=Novy-Marx and Velikov (2016); Ind.Adj.=industry-adjusted
signals; Behavi.=meant to exploit behavioral biases. Sign indicates whether a higher level of the
signal indicates a higher (1) or lower (-1) expected return. Return σ indicates the standard devia-
tion of the time-series of returns. All returns except for those of beta arbitrage and idiosyncratic
volatility are value-weighted (VW) long-short returns calculated by subtracting bottom-decile VW
return from top-decile VW return. Beta arbitrage and idiosyncratic volatility strategies are hedged
for their market exposures based on the CAPM betas of the top and bottom deciles estimated from
weekly returns in the previous three years.

1972-1993 ("pre-93") 1994-2015 ("post-93")

Mean Return Funding Mean Return Funding
No Anomaly Category Sign Return σ β Return σ β

1 Beta arbitrage NMV -1 4.15 24.10 11.70 5.17 28.79 22.54
2 Ohlson’s O-score NMV -1 5.31 37.00 3.94 1.69 34.53 7.58
3 Size NMV -1 1.90 43.04 -12.28 2.17 35.51 -9.57
4 PEAD(SUE) NMV 1 12.60 25.53 -0.88 5.57 25.12 2.98
5 Value NMV 1 11.53 39.42 0.88 3.92 37.41 11.20
6 36-month momentum Behavi. -1 4.45 45.55 -9.56 2.96 37.80 -5.29
7 Long-run reversals NMV -1 5.38 44.51 -9.84 2.74 36.49 -7.49
8 Short-term reversals NMV -1 -5.13 23.88 -1.39 -3.72 40.20 -26.75
9 Momentum NMV 1 20.93 45.69 6.31 8.76 52.91 12.86
10 Annual sales growth Behavi. -1 3.35 27.12 -4.88 1.33 24.48 11.31

11 employees
Ind-adj change in

Ind.Adj. -1 -1.49 21.74 2.38 4.23 20.49 3.14
12 Accruals NMV -1 6.16 19.68 0.07 4.16 24.28 -6.06
13 Ind-adj book-to-market Ind.Adj. 1 7.69 31.79 -0.95 1.99 26.91 -14.57
14 Industry momentum NMV 1 2.98 37.07 4.97 1.03 38.02 1.83
15 Ind-adj firm size Ind.Adj. -1 4.49 21.83 -1.18 1.73 20.91 -0.34

16 price ratio
Ind-adj cash-flow-to-

Ind.Adj. 1 2.17 23.24 -8.13 -2.93 31.99 -4.96
17 Piotroski’s F-score NMV 1 2.05 16.19 2.58 3.62 19.67 -0.11
18 Idiosyncratic volatility NMV -1 3.97 26.96 9.37 3.66 27.65 13.85
19 Price delay Behavi. 1 -1.71 21.88 3.56 -3.48 17.48 3.55
20 Failure probability NMV -1 9.70 48.19 7.49 7.66 56.63 31.74
21 Asset growth NMV -1 6.27 24.27 -3.06 5.83 25.47 13.80
22 Net issuance NMV -1 5.46 18.74 -3.52 8.13 29.96 4.23
23 Seasonality NMV 1 12.43 28.82 -0.16 6.59 27.84 2.22

24 margin
Ind-adj change in profit

Ind.Adj. 1 0.21 21.99 -5.58 -3.00 23.64 -1.05

25 turnover
Ind-adj change in asset

Ind.Adj. 1 1.57 18.53 -3.48 5.35 23.10 10.43
26 PEAD(CAR3) NMV 1 12.09 17.16 4.49 8.14 22.72 -3.60
27 Investment NMV -1 7.76 22.37 2.03 4.81 22.20 6.45
28 Return on market equity NMV 1 16.25 30.84 -4.84 11.12 46.46 22.14
29 Return on book equity NMV 1 9.30 34.29 -4.44 8.25 42.22 22.21
30 Return on assets NMV 1 7.47 31.69 2.14 6.24 40.84 17.34
31 Asset turnover NMV 1 4.04 26.93 -1.42 4.32 32.00 -10.21
32 Gross margins NMV 1 -2.40 21.71 -3.77 2.39 20.88 -5.80
33 Gross profitability NMV 1 0.45 26.34 -0.58 5.08 30.10 -9.93
34 Ind-adj reversals NMV -1 -3.36 19.81 -1.66 -4.21 33.92 -26.44

Average across anomalies: 5.24 28.47 -0.58 3.57 31.14 2.62
Standard deviation across anomalies: 5.66 9.15 5.41 3.79 9.50 13.20
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Broker-dealer leverage as arbitrageur funding condition. The correct measure

of risk of an anomaly asset is its beta with respect to arbitrageur’s stochastic dis-

count factor (SDF). Since the SDF is unobserved, I look for an empirical proxy

for the aribtrageur funding condition ft, the variable underlying the variation in

arbitrageur’s SDF in the model.25

To measure arbitrageur funding shocks, I use shocks to the book leverage of

broker-dealers,

ft = ln
(

LeverageBD
t

)
− ln

(
LeverageBD

t−1

)
, (30)

which Adrian, Etula, and Muir (2014) use to proxy for financial intermediary

funding shocks. Here, a high ft or a high leverage shock indicates a favorable

funding shock for arbitrageurs.26 The book leverage of broker-dealers is defined

as total financial assets net of repo assets divided by the difference between total

financial assets and total liabilities.27 Quarterly data are available from the flow-

of-funds data published by the Federal Reserve.28 In actual analyses, I annualize

the funding shock (30) by multiplying by four and winsorize the series at the 1%

and 99% levels to mitigate the effects of outliers (this removes the smallest and

largest values, both occurring around the recent financial crisis period).29 Figure 2

plots the original log leverage series and the leverage shock series ft.

25If arbitrageur’s SDF m1 were approximately linear in the arbitrageur funding condition f1,
the model’s propositions could be identically stated with the beta with respect to the funding
condition f1. The approximation would be justified in a conditional model if the arbitrageur
funding conditions were expected to vary over a small interval.

26There is a slight abuse of notation since ft in the model is the level of arbitrageur funding,
whereas ft here in the empirical analysis measures a shock to the arbitrageur funding condition.

27Hence, the reverse repo (lending money through a repo) is not part of total assets. Instead,
the difference between repo borrowing and repo lending (“net repo”) enters into total liabilities.
This amounts to assuming that only the relative increase in repo lending (equivalently, a fall in net
repo) is taken as a positive funding shock to arbitrageurs.

28I use the 2016Q1 release, available at https://www.federalreserve.gov/releases/z1/20160310/.

29Adrian, Etula, and Muir (2014) also make seasonal adjustments, which I do not do. Making
seasonal adjustments does not affect my results. Asl and Etula (2012) and Adrian, Moench, and
Shin (2013) also use this series to measure financial sector funding conditions.
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Figure 2: Log Leverage and Arbitrageur Funding Shock
The figure plots the log of broker-dealer leverage and the arbitrageur funding shock over the
period of 1972 to 2015. Broker-dealer leverage is the book leverage of broker-dealers defined as
total financial assets net of repo assets divided by the difference between total financial assets and
total liabilities. Arbitrageur funding shocks are measured by quarterly shocks to the leverage of
broker-dealers. The funding shock is annualized.

Adrian, Etula, and Muir (2014) show that the funding shock is procyclical and

has expected signs of correlation with market volatility, Aaa-Baa spread, and fi-

nancial stocks return. However, among different financial intermediaries, this

measure is especially relevant for levered arbitrageurs such as hedge funds since

a major part of security broker-dealers’ business is prime brokerage for hedge

funds. As prime brokers, they provide their hedge fund clients with various types

of financing, intermediate securities lending, and serve as custodians of the cash

and stocks owned by hedge funds.30

In the online appendix, I repeat my main analyses with stochastically detrended

30Aragon and Strahan (2012) empirically study the financial dependence of hedge funds on
prime brokers, using the Lehman bankruptcy.
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leverage series,

ft = ln
(

LeverageBD
t

)
− 1

N

N

∑
s=1

ln
(

LeverageBD
t−1

)
, (31)

with N = 4, N = 8, and N = 12. I do these robustness checks because a leverage

shock to prime brokers may affect their hedge fund clients with a lag. Hedge

funds, especially larger ones, often arrange with their prime brokers to “lock in”

the margin and collateral requirements for an agreed period. This margin lock-up

is typically 90 days, but it can range from 30 to 120 days. Using the stochastically

detrended leverage addresses this issue, since it assumes that an innovation to the

arbitrageur funding condition at time t is a weighted average of the innovations in

broker-dealer leverage growth in the last four quarters. To see this, simply rewrite

(30) as

ft =
N−1

∑
s=0

N − s
N

[
∆ ln

(
LeverageBD

)]
t−s

, (32)

where
[
∆ ln

(
LeverageBD)]

t indicates the growth rate of leverage from t − 1 to t.

Hence, the beta estimated using the factor resembles the Scholes-Williams beta

(Scholes and Williams, 1977) and the Dimson beta (Dimson, 1979), which account

for nonsynchronous data. Most test results are similar or stronger when I use

N = 4, N = 8, or N = 12.

For the rest of the paper, I use β j to denote anomaly asset j’s beta with respect

to the funding condition ft, and I refer to it as the anomaly’s “funding beta.”31 I

will sometimes refer to the funding beta as “endogenous risk” to highlight that

the beta represents an endogenous risk exposure. When necessary, I will add a

superscript to denote the sample period in which the beta is estimated.

Identification through a sample split. The model’s propositions rely on being

31Adrian, Etula, and Muir (2014) refer to this factor as a “leverage factor.” I refer to it as an
“arbitrageur funding shock” to emphasize that it is the empirical counterpart of the arbitrageur
funding condition in the model.
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able to observe the anomaly assets’ abnormal returns in the absence of arbitrage

capital (µ = 0) and endogenous risks in the presence of arbitrage capital (µ > 0).

Although no single year represents a clear jump in the mass of arbitrageurs in the

anomaly assets, I argue that the first-half (pre-93) and the second-half (post-93)

of my original sample of 1972Q1-2015Q4 are reasonable proxies for times when

arbitrageurs have a negligible mass (µ = 0) in the anomalies and for times when

arbitrageurs have a positive mass (µ > 0) in the anomalies, respectively.

There are three justifications for using 1993 as the cutoff year. First, arbitrage

capital grew rapidly in the 1990s, with hedge fund assets under management ex-

panding from $39 billion in 1990 to $1.73 trillion in 2008 (Stein, 2009). Second,

1993 is the year when some of the most influential papers in equity anomalies

were published: Fama and French (1993) popularized the size and value anoma-

lies by rationalizing them with a multifactor model, and Jegadeesh and Titman

(1993) introduced the momentum anomaly. These papers spurred the search for

new equity anomalies whose abnormal returns are not explained by exposures to

size, value, and momentum factors. Third, Chordia, Subrahmanyam, and Tong

(2014) also use years prior to 1993 as the period when the trading technology and

liquidity had not sufficiently developed to allow for extensive arbitrage at reason-

able costs. Main test results, however, are similar when I use different cutoff years

within the early 1990s.32

An alternative to using a sample split is to use the anomalies’ publication years

to study the effect of arbitrage trade. This approach is used by both McLean and

Pontiff (2016) and Liu, Lu, Sun, and Yan (2015) (LLSY) in their studies of equity

anomalies. However, LLSY find that strong arbitrage activities on size and value

anomalies began around 1992, although some arbitrage activities occurred follow-

ing their original discoveries by Banz (1981) and Rosenberg, Reid, and Lanstein

32The online appendix repeats the main regressions using 1991, 1992, 1994, and 1995 as the
cutoff year.

34

http://scholar.harvard.edu/tcho/publications/turning-alphas-into-betas


(1985).33 This suggests that using the 1993 cutoff is a reasonable alternative to

using publication years.

Given my sample split approach, I measure the latent mispricing of an anomaly

by its mean long-short return in the pre-93 sample (rpre93
j ) and the endogenous

risk of an anomaly by its beta with respect to the arbitrageur funding conditions

in the post-93 sample (βpost93
j ). Since the anomaly assets are not strongly exposed

to market excess returns or arbitrageur funding shocks in the pre-93 sample, using

pre-93 CAPM alphas, pre-93 Fama-French three-factor alpha, or pre-93 arbitrageur

funding alphas to measure latent mispricings does not substantially change the

paper’s main results (see the online appendix).

Time-series evidence of endogenous risk exposures. This paper’s main contri-

bution is to use the cross-section of anomaly assets to test the idea that arbitrage

generates endogenous risk by turning αs into βs. However, I briefly highlight that

time-series evidence is also consistent with the endogenous risk idea.

First, the returns on anomaly assets have fallen. Table 1 shows that the annu-

alized long-short returns on anomaly assets have fallen from 5.24% in the pre-93

period to 3.57% in the post-93 period. This implies a 32% decline in expected

returns as a result of increased arbitrage, similar to the 32% fall in expected re-

turns that McLean and Pontiff (2016) find in anomaly assets after an academic

publication. If I assume that arbitrageurs reverse the direction of the trades for

the anomalies with negative pre-93 mean returns, the fall in expected returns is

from 6.04% to 3.85%, which is a 37% decline.

Second, as the anomalies’ expected returns have fallen, their betas with respect

to arbitrageur funding shocks have risen. Table 1 shows that the cross-sectional

average of arbitrageur funding betas increases from -0.58 to 2.62 between the two

sample periods. If I again assume that arbitrageurs reverse the direction of the

trades for the anomalies with negative pre-93 mean returns, the change in beta is

33They attribute this to Fama and French (1992).
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from -0.53 to 5.70. Although not reported in the table, in the post-93 period, 8.1%

of the time-series variation in the return on an equal-weighted (EW) index of the

34 anomaly assets is explained by the variation in arbitrageur funding shock.34 In

contrast, in the pre-93 period, the EW index return has an R2 of only 0.3% in the

same regression.

Next, I move on to cross-sectional tests. There, I show that cross-sectional ev-

idence strongly points to anomaly assets becoming endogenously riskier due to

arbitrage trade.

3.2. Mispricing turns into endogenous risk

I first test how well an anomaly’s latent mispricing (pre-93 mean return r̄pre
j ) pre-

dicts its endogenous risk (post-93 beta with respect to arbitrageur funding shocks

β
post
j ) (Proposition 1). The simple intuition is that an anomaly with a larger la-

tent mispricing attracts correspondingly more arbitrage capital, which generates

greater endogenous risk. The empirical test is to run the following regression in

the cross-section of 34 anomaly assets

β
post
j = b0 + b1rpre

j + ηj (33)

and test if b1 = 0.

A complication arises because pre-93 mean return is estimated. If the estimated

mean rpre
j is a noisy signal of the actual latent mispricing, and if arbitrageurs ob-

serve the true latent mispricing whereas the econometrician does not, then the

standard errors for the cross-sectional regression (33) need to be adjusted for the

fact that the regressor is generated. Hence, I jointly estimate the coefficients in the

cross-sectional regression (33), pre-93 mean long-short returns, and post-93 fund-

ing betas using the generalized method of moments (GMM). Since arbitrageurs

34When constructing this index, I reverse the direction of the trade for anomalies with negative
pre-93 long-short returns.
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may actually have the identical information set that the econometrician has, using

realized returns in the past to gauge an anomaly asset’s latent mispricing, I also

report ordinary least squares (OLS) t-statistics.

To use GMM, consider the following data-generating process. In the pre-93

period, a mean return is a noisy realization of the latent mispricing:

rj,t = r̄pre
j + εj,t (34)

This latent mispricing determines an anomaly’s endogenous exposure to funding

shocks:

β
post
j = b0 + b1r̄pre

j + ηj (35)

Here, ηj has a cross-sectional mean of zero. This funding beta then determines the

equilibrium expected return in the post-93 period:

rj,t = apost
j + β

post
j ft + εj,t (36)

These conditions imply the following 4J moment conditions:

g4J×1 (b) =



E
[(

rj,t − r̄pre
j

)
1 (t ∈ Pre)

]
E
[(

rj,t − apost
j − β

post
j ft

)
1 (t ∈ Post)

]
E
[(

rj,t − apost
j − β

post
j ft

)
ft1 (t ∈ Post)

]
E
[(

β
post
j − b0 − b1rj,t

)
1 (t ∈ Pre)

]


, (37)

I then use a selection matrix to ensure that a cross-sectional expectation is taken

over the last set of J moments,

A(3J+2)×4J =


I3J×3J 03J×J

01×3J 11×J

01×3J r̄′1×J

 (38)
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where r̄ is a J × 1 vector of pre-93 mean returns. Then, I find parameter estimates

b̂ such that

Agt

(
b̂
)
= 0(3J+2)×1 (39)

The chosen selection matrix generates the identical set of moment conditions as in

sequential OLS estimations of (34), (36), and then (35).

The first column of Table 2 reports the parameter estimates, OLS t-statistics,

and GMM t-statistics from estimating the effect of latent mispricing on funding

beta specified in (33). Each percentage of pre-93 mean return turns into a post-93

funding beta of 1.24. To interpret this number, since returns are in percentages

whereas the funding shocks are not, a beta of 1.24 means that a 100% increase

in the leverage of broker-dealers leads to a 1.24% increase in the anomaly asset

return. This “turning alphas into betas” effect is statistically significant based on

both GMM and OLS standard errors. The large R2 implies that the pre-93 return is

a strong predictor of an anomaly’s endogenous exposure to arbitrageur funding.

The intercept is statistically insignificant, implying that there is no strong trend

in the anomalies’ funding betas apart from the endogenous effect coming from

arbitrage activity.

Additional control variables have little influence on the results. In the second

column, I add pre-93 funding beta as an additional regressor to show that it is

not the persistence or magnification of pre-93 beta that drives the large post-93

funding betas. The coefficient of 0.75 on the pre-93 funding beta implies some

persistence in the beta, although the effect is significant only based on t-OLS and

not based on t-GMM. Despite this persistence, since pre-93 funding beta was small

in magnitude, including it in the regression has little effect on the coefficient on

pre-93 mean return.

In the third column, I add pre-93 return volatility as an additional regressor, thus

addressing the concern that the anomalies with larger pre-93 mean returns also

tend to have large pre-93 volatilities; that is, pre-93 mean return may proxy not
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Table 2: Mispricing Turns into Funding Beta

Baseline: β
post
j = b0 + b1r̄pre

j + ηj

This table reports the results from the cross-sectional regression predicting an anomaly asset’s
post-1993 funding beta using pre-1993 mean long-short return. The dependent variable in the first
three columns is post-1993 funding beta β

post
j , calculated under the assumption that the beta is

constant during the sample period: rj,t = a0 + β
post
j ft + εt. The dependent variable in the fourth col-

umn is the post-1993 rate of increase in beta β
post
j,1 , calculated under the assumption that anomaly

return attains an increasingly large exposure to arbitrageur funding during the post-1993 sam-
ple: rj,t = a0 +

(
β

post
j,0 + β

post
j,1 ln (t)

)
ft + εt , where t is the number of quarters into the sample

(t = 1 for 1994Q1). The dependent variable in the last column is the post-1993 funding correlation

ρ
post
j = β

post
j σ

post
f

(
σ

post
j

)−1
in percentage (%), calculated under the assumption that the correlation

is constant during the post-1993 sample. t-OLS is the t-statistic calculated using only the residu-
als from the cross-sectional regression and accounts for a possible heteroskedasticity of residuals
across anomaly assets. t-GMM refers to a t-statistic obtained from the GMM estimation procedure
and accounts for the effects of generated regressors and cross-anomaly correlations. Arbitrageur
funding shocks are measured by quarterly shocks to the leverage of broker-dealers.

Post-93 Funding Beta Post-93 Funding

Level β
post
j Incr. Rate β

post
j,1 Corr ρ

post
j

Pre-93 Mean Long-Short Return rpre
j 1.24 1.10 1.19 0.34 1.42

(t-OLS)
(3.51) (2.82) (3.19)

(2.49) (2.80)

(t-GMM)
(2.03) (1.98) (2.15)

(0.81) (2.41)

Pre-93 Funding Beta β
pre
j 0.75

(t-OLS)
(2.50)

(t-GMM)
(1.17)

Pre-93 Return Volatility σ
pre
j 0.07

(t-OLS)
(0.26)

(t-GMM)
(0.10)

Intercept -3.84 -2.69 -5.49 -1.04 -3.89
(t-OLS) (-

1.44)
(-

1.00)
(-

0.80)
(-1.00) (-0.89)

(t-GMM) (-
1.68)

(-
1.20)

(-
2.46)

(-1.01) (-0.94)

Anomalies 34 34 34 34 34
Adjusted R2 0.26 0.33 0.24 0.14 0.15
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only for latent mispricing, but also for volatility. We see, however, that controlling

for pre-93 volatility has little effect on the slope of pre-93 mean return and that

pre-93 volatility is a highly insignificant predictor of post-93 funding beta. This

shows that it is the latent mispricing rather than volatility that predicts an anomaly

asset’s endogenous risk.

Thus far I have treated the year 1993 as a “jump” in the mass of arbitrageurs

in the anomaly assets. In reality, the increase in the mass of arbitrageurs in the

anomalies (µ in the model) and hence the anomalies’ endogenous exposures to ar-

bitrageur funding shocks would have been gradual even within the post-93 period.

Therefore, I allow the arbitrageur funding beta to be an increasing and concave

function of time t within the post-93 period. In particular, I assume the follow-

ing data-generating process in which an exposure to arbitrageur funding grows at

the rate β
post
j,1 t−1, where t here is the number of quarters into the post-93 sample

(1994Q1 being t = 1):35

Pre-93 return: rj,t = r̄pre
j + εj,t

Post-93 return: rj,t = apost
j +

(
β

post
j,0 + β

post
j,1 ln (t)

)
ft + εj,t

Beta determination: β
post
j,1 = b0 + b1r̄pre + ηj

(40)

In this case, the latent mispricing of an anomaly measured by the pre-93 mean

return should predict the rate of increase in beta β
post
j,1 .36

The fourth column of Table 2 reports the “turning alphas into betas” effect es-

timated under the assumption of a gradual endogenous risk exposure. Again,

the latent mispricing measured by the pre-93 mean return predicts an anomaly’s

endogenous risk measured by β
post
j,1 . Although the coefficient is not statistically

35When implementing the GMM, I set ln (t) = 0 for all t ∈ Pre. The values of ln (t) in the pre-
93 sample do not affect the results, as all moment conditions involving ln (t) are multiplied by
the post-93 dummy. Admittedly, the specific function through which I introduce concavity in t is
arbitrary. However, I find that the specific way of introducing concavity in t does not lead to large
changes in the parameter estimate, unless the function is too “linear” over t ∈ Post.

36The GMM implementation of this model is explained further in the Appendix.
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significant based on t-GMM because of large standard errors, the estimated coef-

ficient is similar in magnitude to the one from the first column. Since there are 88

quarters in the post-93 period (1994Q1-2015Q4), it follows that each percentage of

pre-93 mean return leads to a funding beta increase of 0.34× ln (88) = 1.52 by the

end of the post-93 period. The intercept is small, implying that there is no strong

trend in the funding beta other than through arbitrage activity.

Although I have used funding beta to measure an anomaly asset’s exposure to

arbitrageur funding, beta can change spuriously because of volatility rather than

correlation. For instance, to elaborate on the point made earlier, suppose that

anomalies with large pre-93 mean returns are precisely the ones with large return

volatilities. If such anomalies’ large volatilities persist through the post-93 period,

then even if anomalies have equal post-93 correlations with arbitrageur funding,

pre-93 return would appear to predict post-93 funding beta:

β
post
j = ρ

post
j

σ
post
j

σ
post
f

∝ r̄pre
j (41)

To rule out this possibility, I repeat the baseline regression using funding correla-

tion ρ
post
j as the dependent variable.37

The last column of Table 2 reports the results from predicting an anomaly’s

post-93 funding correlation using its pre-93 mean return. The results are strong

both based on the t-statistics and on R2. This suggests that anomalies’ large post-

93 funding betas are driven by correlations, not volatilities. In terms of magnitude,

each percentage of pre-93 mean return raises the anomaly’s funding correlation

by 1.42 percentage points (%p). Since the anomaly assets’ pre-93 mean mean

returns range from −5% to 21%, the predicted post-93 correlation with arbitrageur

funding shock ranges from −7% to 30%.

The results presented here are robust to alternative measures of latent mispric-

37I leave more detailed discussions of the GMM implementation to the Appendix.
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ing. The online appendix shows that using pre-93 CAPM alpha, pre-93 Fama-

French three-factor alpha, or pre-93 arbitrageur funding alpha generates similar

results. The same appendix also shows that using a volatility-neutral measure of

latent mispricing generates similar results.

The results here suggest that anomaly assets’ exposures to the arbitrageur fund-

ing conditions are an endogenous outcome of arbitrage trading. In Section 3.5, I

show that these exposures help explain the anomaly assets’ equilibrium returns in

the post-93 period. Hence, the endogenous risk theory explains the origin of betas

before using the betas to explain equilibrium expected returns—a response to the

question, “Why are betas exogenous?” (Cochrane, 2011: p.1063). Next, I provide

further evidence that the betas are generated by arbitrage activity.

3.3. Endogenous risk is explained by anomaly-specific arbitrage

capital

Here, I test the prediction that, if anomaly assets’ funding betas are indeed a

byproduct of arbitrage activity, then the funding betas must be explained by

anomaly-specific measures of arbitrage activity (Proposition 2). To test this, I find

measures of arbitrage activity specific to an anomaly. Then, I run a cross-sectional

regression to test if an anomaly with greater arbitrage activity has a larger post-93

funding beta during the same period.

I use three measures of anomaly-specific arbitrage capital based on how much

shorting there is in the bottom decile of the anomaly relative to the top decile: the

difference in the short interest ratio in the bottom and top deciles of an anomaly

(“short interest ratio difference”); percentage (log) difference in the short inter-

est ratio in the bottom and top deciles (“log short interest ratio difference”); and

difference in the days to cover in the bottom and top deciles (“days to cover differ-

ence”). Net shorting is a relatively clean way to measure arbitrage activity since
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most shorting is done by hedge funds.38

Specifically, short interest ratio, previously used by Hanson and Sunderam

(2014), is defined as the number of shares being shorted (short interest) divided

by the number of shares outstanding at a given time. I compute the short interest

ratio of each stock in each month by dividing its mid-month short interest amount

(from Compustat) by shares outstanding on the same day (from CRSP). Then, to

obtain the short interest ratio difference measure, I take the post-93 time-series

average of the monthly difference between the VW average short interest ratios in

the bottom decile and the top decile:

DSIRpost
j = 100× T−1 ∑T

t=1

(
SIRbottom decile

j,t − SIRbop decile
j,t

)
(42)

where the value-weighted average short interest ratio of a decile is computed as

SIRdecile
j,t = ∑

i∈decilej,t

ωi,t
Short Interesti,t

SharesOutstandingi,t
(43)

with ωi denoting the weight of stock i in the relevant extreme decile and t denoting

month.

The second measure of arbitrage activity, log short interest ratio difference, is

a variant of the short interest ratio difference measure. Here, I take a percentage

difference rather than a level difference in the short interest ratio in the bottom

and top deciles because the level difference has a strong positive trend over time;

that is, taking a time-series average of the level difference puts disproportionate

weights on recent years. Hence, the log short interest ratio difference measure is

the following:

38A report by Goldman Sachs (2014) estimates that 85% of the short interest is held by hedge
funds. Similarly, Boehmer, Jones, and Zhang (2013) and Ben-David, Frazoni, and Moussawi (2012)
both argue that hedge funds are responsible for most of the short interest. Dechow et al. (2001),
Hirshleifer, Teoh, and Yu (2011), and Cao et al. (2012) also interpret short activity on an anomaly
as arbitrage activity.
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DLSIRpost
j = T−1 ∑T

t=1

(
ln
(

SIRbottom decile
j,t

)
− ln

(
SIRtop decile

j,t

))
(44)

where t is month.

As for the third measure, days to cover (DTC) of a stock is defined as its short

interest divided by average daily trade volume. Thus, it measures the expected

number of days required to recover all shorted stocks from the market, also inter-

preted as the liquidity cost of exiting the short positions. Since DTC normalizes

short interest by the stock’s liquidity, Hong et al. (2015) argues that DTC is a

more accurate measure of arbitrage intensity than short interest ratio. To measure

an anomaly’s average DTC during the post-93 period, I first compute a stock’s

DTC each month by dividing its monthly short interest ratio by the average share

turnover (trade volume divided by shares outstanding) during the same month.

I subtract the VW average DTC in the top decile of an anomaly from that in the

bottom decile to obtain the DTC difference between the two deciles. I then com-

pute the time-series average of this monthly DTC measure during the post-93

sample period to obtain the average DTC difference between the two deciles of an

anomaly:

DDTCpost
j = T−1 ∑T

t=1

(
DTCbottom decile

j,t − DTCtop decile
j,t

)
(45)

where the value-weighted average days to cover of a decile is computed as

DTCdecile
j,t = ∑

i∈decilej,t

ωi,t
Short Interesti,t

Avg Daily Trade Volumei,t
(46)

with ωi denoting the weight of stock i in the relevant extreme decile. For all three

measures, I compute the same measure for the pre-93 period, although the short

interest data starts from 1973 rather than 1972, when my pre-93 period begins.

44



For each of the three measures of anomaly-specific arbitrage capital, I ask if an

anomaly with more arbitrage activity has a larger funding beta. This amounts

to running the following regression, where ArbCapitalpost
j is an anomaly-specific

arbitrage capital measure:

β
post
j = b0 + b1ArbCapitalpost

j + ηj (47)

I estimate the parameters using OLS and report t-statistics based on heteroskedasticity-

consistent standard errors. Although the explanatory variables in this regression

are estimated, I do not need to correct for their variances because it is the realized

arbitrage activity, not the unobserved “true mean,” that matters for generating the

observed betas.39

Table 3 reports the test results. During the post-93 period, funding betas are

explained by anomaly-specific arbitrage capital. The highly significant slope coef-

ficients, large R2, and small intercepts imply that once arbitrage activity has been

controlled for, there is little idiosyncratic or common variation in the anomalies’

funding betas. Interpretations of the slope coefficients are as follow. First, the

coefficient on the short interest ratio difference implies that, in the cross-section

of anomalies, the funding beta increases by 4.94 for an increase of 1/100 in the

difference in the short interest ratio between the bottom and the top deciles. Next,

the coefficient on the log short interest ratio difference implies that, again in the

cross-section of anomalies, the funding beta increases by 0.14 for each 1% point in-

crease in the short-interest-ratio difference between the bottom and the top deciles.

Finally, the coefficient on DTC implies that, in the cross-section of anomalies, the

funding beta increases by 4.11 for each increase in the number of days it takes to

recover the short interest in the bottom decile relative to the top decile.

Interestingly, the ability of anomaly-specific arbitrage capital to explain the

39However, GMM t-statistics would be useful to control for the cross-asset correlations.
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Table 3: Funding Betas Are Explained by Arbitrage Activity

Baseline: β
post
j = b0 + b1DSIRpost

j + ηj

This table reports results from the cross-sectional regressions explaining an anomaly asset’s fund-
ing beta using an anomaly-specific measure of arbitrage capital. The first three columns report
results for the post-1993 period, and the last three columns report results for the pre-1993 pe-
riod. The dependent variable is the funding beta of an anomaly asset in the pertaining sample
period, when arbitrageur funding shocks are measured by quarterly shocks to the leverage of
broker-dealers. Short interest ratio difference, log short interest ratio difference, and days to cover
difference are the time-series averages of the difference in the value-weighted (VW) average of each
measure between the bottom and top deciles of the anomaly asset. Short interest ratio difference
uses 100 times the level difference in the VW average short interest ratio (short interest÷shares
outstanding) in the bottom and the top deciles. Log short interest ratio difference uses the log
difference in the VW average short interest ratio in the bottom and the top deciles. Days to cover
difference uses the level difference in the VW average days to cover (short interest÷average daily
trade volume) in the bottom and the top deciles.

Dependent Variable: Funding Beta

Post-93 (1994-2015) Pre-93 (1972-1993)

Short Interest Ratio 4.94 11.33
Difference (3.98) (5.39)

Log Short Interest Ratio 14.46 6.37
Difference (3.81) (5.72)

Days to Cover Difference 4.11 4.14
(3.05) (4.22)

Intercept -0.79 -0.42 0.98 -2.00 -1.95 -1.73
(-0.39) (-0.20) (0.48) (-2.45) (-2.23) (-2.18)

Anomalies 34 34 34 34 34 34
Adjusted R2 (0.37) (0.32) (0.18) (0.43) (0.39) (0.36)

Note: In the parantheses are OLS t-statistics calculated with heteroskedasticity-consistent standard
errors. The average of the arbitrage activity measures across all anomalies are 0.69 (DSIR), 0.21
(DLSIR), and 0.40 (DDTC) in the post-93 period. The average of the arbitrage activity measures
across all anomalies are 0.13 (DSIR), 0.22 (DLSIR), and 0.28 (DDTC) in the pre-93 period.

cross-section of funding betas is strong in the pre-93 period as well, implying

that the pre-93 funding betas were also an outcome of arbitrage activity. However,

as noted in the table, the magnitudes of the arbitrage activities were substantially

smaller in the pre-93 period, causing the pre-93 funding betas to be smaller in

magnitudes than post-93 funding betas.
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3.4. Mispricing turns into a larger endogenous risk on the short

side

Before testing Proposition 3, I carry out a test that is outside the scope of the model

but provides further evidence for the endogenous arbitrage risk view. This test

separates out the long-short returns on anomaly assets into long (top decile) and

short (bottom decile) portfolios and asks whether the same amount of abnormal

return turns into a larger endogenous risk on the short side than on the long side

of the anomaly. Intuitively, the long side of an anomaly can be exploited by a large

class of investors including mutual funds, pension funds, and individual investors

who are not exposed to arbitrageur funding shocks, whereas the short side of an

anomaly is primarily exploited by arbitrageurs, such as hedge funds, as argued in

Section 3.3. Hence, if an anomaly’s endogenous risk is a byproduct of arbitrage

activity, we should expect a larger “turning alphas into betas” effect on the short

side.

To test this, I repeat the test of Proposition 1 in Section 3.2 using 68 portfolios

representing long and short sides of the 34 anomaly assets. Since the test portfolios

now have significant market exposures, I take the robust approach of measuring

the latent mispricing using pre-93 CAPM alpha (instead of simple mean return)

and endogenous risk using post-93 funding beta net of market exposure. Hence,

the baseline regression is

β
post
j = b0 + b1Shortj + b2α

pre,CAPM
j + b3 α

pre,CAPM
j × Shortj + ηj, (48)

where j now indexes one of the 68 long- and short-side anomaly portfolios, and

Shortj is a dummy variable for short-side portfolios. I test if b3 is positive and

statistically different from zero.

Table 4 and Figure 3 report the test result. Consistent with the hypothesis, the

turning-alphas-into-betas effect is much stronger on the short side than on the

47



Table 4: Mispricing Turns into a Larger Funding Beta on the Short Side

Baseline: β
post
j = b0 + b1Shortj + b2α

pre,CAPM
j + b3 α

pre,CAPM
j × Shortj + ηj

This table reports results from the cross-sectional regressions explaining an anomaly asset’s post-
1993 funding beta net of market exposure using its pre-1993 CAPM alpha. An anomaly asset is
either the long or short side of 34 anomalies. The dependent variable is post-1993 funding beta
β

post
j , calculated under the assumption that the funding beta net of market exposure is constant

during the post-1993 sample: rj,t − r f
t = a0 + β

post
j ft + β

post,mkt
j

(
rm

t − r f
t

)
+ εt, where r f

t and rm
t

denote risk-free rate and market return. The independent variable is pre-1993 CAPM alpha: rj,t −
r f

t = α
pre,CAPM
j + β

pre,CAPM
j

(
rm

t − r f
t

)
+ εt. Arbitrageur funding shocks are measured by quarterly

shocks to the leverage of broker-dealers.

Dependent Variable: Post-93 Funding Beta†

Long Side Short Side Combined

Pre-93 CAPM Alpha 0.74 2.67 0.74
(1.51) (8.18) (1.51)

Pre-93 CAPM Alpha × 1(Short) 1.93
(3.26)

1(Short) 6.81
(3.07)

Intercept -3.71 3.10 -3.71
(-1.91) (1.16) (-1.97)

Anomalies 34 34 68
Adjusted R2 0.06 0.71 0.50

Notes: † This funding beta is net of market exposure. In the parentheses are OLS t-statistics
calculated with heteroskedasticity-consistent standard errors.

long side. When the long and short sides of the anomalies are separately ana-

lyzed (the first two columns), the slope of the coefficients are significant based on

OLS t-statistics. However, the magnitude of the slope and the R2 of the regression

are much larger on the short side. This difference in the slope is statistically sig-

nificant, as reported in the last column. This result is consistent with arbitrageurs

generating larger endogenous risks on the short sides of the anomalies where they

have a larger relative presence.

The result here is difficult to reconcile with the idea that a hidden fundamental

risk explains the large returns earned by anomaly assets. To see this, suppose

that the anomaly assets have always been commonly exposed to single latent risk

factor Lt: rj,t = δjLt + εj,t. Suppose also that, for whatever reason, this latent
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Figure 3: Endogenous Risk Is Larger on the Short Side
The figure plots the pre-1993 CAPM alphas and post-1993 funding betas of excess returns on
long-side and short-side portfolios of anomaly assets. The solid circles are short-side portfolios,
and hollow circles are long-side portfolios. The figure shows that mispricing measured by pre-93
CAPM alpha transforms into a larger post-93 funding beta on the short side of the anomalies than
on the long side. Funding beta is measured as the beta with respect to arbitrageur funding shocks
proxied by quarterly shocks to the leverage of broker-dealers.

risk factor has become more correlated with the arbitrageur funding conditions

in recent years: ρ (Lt, ft) = 0 in pre-93 but ft = γpostLt + ηt in post-93 for some

noise ηt. This would at least explain why pre-93 mean returns appear to explain

anomalies’ post-93 betas with respect to the arbitrageur funding conditions and

why post-93 funding betas explain post-93 expected returns, consistent with the

empirical results in Section 3.2 and Section 3.5. In this case, however, the short

and long sides of the anomaly assets are expected to have the same coefficient in

the “turning alphas into betas” regression. This is because, in this scenario, the

coefficient would simply measure how well the arbitrageur funding shock proxies

for the latent risk factor during the post-93 period. Analytically, since pre-93

expected return is r̄pre
j = δj L̄preand post-93 beta is β

post
j = δjγ

post, the ratio between
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the two is a constant:

β
post
j /r̄pre

j = γpost/L̄pre (49)

Hence, the result here cannot be rationalized by the hidden fundamental risk

view, at least under the assumption that there is one latent risk factor to which

the anomalies are commonly exposed. Rationalizing it with multiple latent risk

factors would require a much more elaborate story in which the long and short

sides of the anomalies are exposed to different latent risk factors and those latent

risk factors have come to attain different post-93 correlations with the arbitrageur

funding conditions.

3.5. “Intermediary asset pricing” of anomaly assets based on

endogenous risks

The empirical tests up to this point have focused on showing that funding betas

arise as an endogenous outcome of different arbitrage activities on differently mis-

priced anomaly assets. An empirical question, however, is whether arbitrageurs

take these funding betas into consideration when assessing risks of the anomaly

assets. Here, I present some evidence that arbitrageurs are mindful of being ex-

posed to funding betas, the endogenous risks they themselves have generated.

However, I also find that jointly explaining the expected returns of 34 different

equity anomalies with single factor is a challenging task.

The objective is to test Proposition 3, which predicts that the anomaly assets’

endogenous exposures to arbitrage risk explain the expected returns that survive

in equilibrium. To do this, in the post-93 period, I run a cross-sectional asset

pricing regression using beta with respect to arbitrageur funding. I then test if the

price of risk is positive and if the variation in expected returns is explained by the

variation in funding betas. In addition, I test the model’s nonconventional asset

pricing predictions.
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Before I delve into the test, I highlight this exercise’s close connection to the

intermediary asset pricing test of Adrian, Etula, and Muir (2014) (AEM). Proxying

for the financial intermediary funding condition using the broker-dealer leverage

shocks, they show that the single factor explains the cross-section of returns on 25

equity portfolios sorted by size and value, 10 equity portfolios sorted by momen-

tum, and 6 bond portfolios sorted by maturity. They do this over the years 1968

to 2009, and they test the usual restriction that the intercept of the cross-sectional

regression must be zero.

At the most basic level, the exercise here can be viewed as extending the AEM

result on size, value, and momentum anomalies to a much wider set of equity

anomalies. More importantly, however, I use this exercise to show that the en-

dogenous risks generated by arbitrageurs prevent the initial anomaly returns from

disappearing completely. Furthermore, I use this exercise to highlight the endoge-

nous arbitrage risk model’s nonconventional asset pricing predictions.

The endogenous-arbitrage-risk model makes two nonconventional predictions

in asset pricing. First, if anomaly assets tend to have positive funding betas, we

must also see a positive intercept in a cross-sectional regression. For arbitrageurs

to generate positive βs in anomalies through price pressure, the anomaly assets

must sometimes be mispriced and generate abnormal returns. This means that

the zero-beta rate—the risk-adjusted return that arbitrageurs are earning from

anomaly assets—must be higher than the risk-free rate, on average, during the

sample period. Second, the price of risk is biased upward if the cross-sectional

regression is run in a sample that includes both the “pre-arbitrage” and “post-

arbitrage” periods. This is because such a regression would try to explain the large

returns during the “pre-arbitrage” period driven by mispricing using large betas

during the “post-arbitrage” period, when the actual causality flows in the opposite

direction from the “pre-arbitrage” return to “post-arbitrage” beta. Although this

second point is not formalized as part of Proposition 3, I do examine the issue
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empirically.

I now use a cross-sectional asset pricing regression to explain anomaly assets’

returns through their exposures to arbitrageur funding shocks. To do this, I jointly

estimate the anomaly assets’ betas in the time-series of returns and the price of

risk in the cross-section of returns in a GMM framework:

Time-series regressions: rj,t = aj + β j ft + εj,t for j = 1, .., J

Cross-sectional regression: r̄j = λ0 + λ1β j + ej

(50)

where the cross-sectional regression is an OLS regression that puts an equal weight

on all anomaly assets. As articulated by Cochrane (2005), mapping these regres-

sions into GMM allows me to obtain standard errors that account for both the fact

that βs are estimated and the fact that returns can be correlated across anomaly

assets. However, the baseline regression uses only 88 quarters in the post-93 sam-

ple to test if exposure to arbitrageur funding has a positive price of risk within

this period of large arbitrageur presence. Hence, the estimates of the full variance-

covariance matrix of errors ε may be subject to noise. Given this consideration, I

also report t-statistics that adjust the standard errors for the fact that betas are esti-

mated but use the conventional heteroskedasticity-consistent matrix of residuals ε

that restrict the cross-anomaly correlations to be zero (“t-GenReg”). Furthermore,

I compare the arbitrageur funding shock’s ability to explain the cross-section of

anomaly mean returns to that of conventional multifactor models.

Table 5 presents the results. In terms of R2, during the post-93 sample, the

single arbitrageur funding shock explains 37% of the cross-sectional variation in

the long-short returns on 34 anomaly assets. This R2 is somewhat lower than the

R2s I obtain from the Fama-French three-factor model (Fama and French, 1993),

the Carhart four-factor model (Carhart, 1997), and the Fama-French five-factor

model (Fama and French, 2008). However, that the market and size factors exhibit

negative prices of risk in most of these multifactor models speaks of the difficulty
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of jointly explaining the cross-section of anomaly expected returns.

The estimated price of risk is 0.18 so that each additional unit of funding beta

is compensated by an annualized return of 0.18%. This estimated slope, however,

is not unequivocally significant. When cross-anomaly correlations are restricted

to be zero, the standard error implies a t-statistic of 2.30. However, based on the

most conservative GMM standard errors where cross-anomaly correlations are

freely estimated, the t-statistic is 1.30. This implies that, in the data, some of the

anomaly assets are highly correlated with other anomaly assets, which increases

the standard errors.
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Table 5: “Intermediary Asset Pricing” of Anomaly Assets

Baseline: r̄post
j = λ0 + λ1β

post
j + ej

This table reports the risk prices of factors and intercepts estimated in the cross-section of anomaly
assets. Returns are long-short returns expressed in annualized percentages. Betas are estimated
in the time-series regression rj,t = aj + β j ft + εj,t for each anomaly. t-GenReg refers to t-statistic
corrected for generated regressors but not for cross-anomaly correlations. That is, to obtain the
standard errors accounting for generated regressors, I allow for heteroskedastic residuals ε j for
the mean returns and do the correction derived by Shanken (1992), but under the assumption

of Cov
(

ε j′ , ε j′′
)
= 0 for j′ 6= j′′. t-GMM refers to GMM t-statistic that additionally corrects for

correlations across anomaly assets. Arbitrageur funding shocks are measured by quarterly shocks
to the leverage of broker-dealers.

Post-93 Pre-93 Pooled
(1994-2015) (1972-1993) (1972-2015)

Arb
Fund-

ing

Arb
Fund-

ing
Select

25†

Fama-
French

3
Factors

Carhart
4

Factors

Fama-
French

5
Factors

Arb
Fund-

ing

Arb
Fund-

ing

Arb Funding 0.18 0.20 0.20 0.32
(t-GenReg) (2.30) (2.29) (1.43) (3.84)
(t-GMM) (1.30) (1.74) (0.67) (1.62)

Market -9.30 -6.96 -10.55
(t-GenReg) (-2.16) (-1.60) (-2.20)
(t-GMM) (-1.89) (-1.52) (-1.77)

SMB -0.57 0.19 -1.68
(t-GenReg) (-0.25) (0.08) (-0.69)
(t-GMM) (-0.22) (0.07) (-0.57)

HML 1.50 2.02 1.28
(t-GenReg) (0.53) (0.72) (0.43)
(t-GMM) (0.52) (0.72) (0.44)

MOM 5.25
(t-GenReg) (1.31)
(t-GMM) (1.33)

CMA 1.70
(t-GenReg) (0.71)
(t-GMM) (0.72)

RMW 2.93
(t-GenReg) (1.30)
(t-GMM) (1.40)

Intercept 3.10 3.14 2.06 1.97 1.91 5.35 4.14
(t-GenReg) (5.13) (4.67) (3.62) (3.73) (2.95) (9.34) (8.97)
(t-GMM) (3.15) (2.94) (3.02) (2.80) (3.01) (7.93) (6.11)

Anomalies 34 25 34 34 34 34 34
Quarters 88 88 88 88 88 88 176
Adjusted R2 0.37 0.29 0.49 0.54 0.53 0.01 0.28

Note: † denotes 25 anomaly assets chosen out of 34 by iteratively eliminating anomaly assets that
are similar to a linear combination of the other anomaly assets until all anomalies have an R2 of
less than 50% when linearly projected to all the other anomalies.
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To see if this is the case, I try restricting my attention to a smaller set of anomaly

assets that “span” my 34 anomalies. Starting with the 34 anomalies, I iteratively

eliminate an anomaly asset that has the largest R2 when projected onto the other

anomalies until the remaining anomalies have R2s of less than 50% in such an

exercise. Using these more “independent” anomalies shows a similar price of

risk estimate (0.20 rather than 0.18) but a substantially smaller GMM standard

error, making the price of risk statistically significant at the 10% level. There are

other avenues for dealing with cross-anomaly correlations. One possibility is to

use the generalized least squares (GLS) to penalize the anomalies whose residuals

are volatile or highly correlated with the residuals of other anomalies, but this

still relies on correctly estimating the cross-anomaly correlations of 34 anomaly

assets using 88 time-series observations. Another possibility would be to estimate

cross-anomaly correlations of the residuals in the entire sample rather than in the

post-93 sample, an approach taken by Greenwood (2005b) to deal with the short

time-series. I do not explore this approach in this paper.

To summarize the discussion on the price of risk, there is some evidence that

arbitrageurs demand compensation for the funding risks that arbitrageurs them-

selves have created in the anomalies, causing the anomaly returns to survive in

equilibrium. Although the GMM t-statistics for the price of risk is not large in the

baseline regression, both the large R2 and the improved performance using the

more independent anomaly assets suggests that focusing on the risks that arbi-

trageurs face is a fruitful path to take in order to jointly explain the cross-section

of expected returns of a large set of asset pricing anomalies.

The intercept of the regression is positive and significant, consistent with arbi-

trageurs being constrained and anomaly assets being mispriced in some parts of

the sample period. The intercept of 3.10% measures the average investment op-

portunity faced by arbitrageurs: arbitrageurs generate a risk-adjusted return that

is on average 3.10% above the risk-free rate.
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(a) Pre-93 Sample (1972-1993)
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(b) Post-93 Sample (1994-2015)

Figure 4: Arbitrageur Funding Beta and Mean Long-short Return by Sample
Period

These figures plot the mean long-short returns and arbitrageur funding betas of 34 equity anomaly
assets in the pre-93 (left) and post-93 (right) samples, proxying for pre-arbitrage and post-arbitrage
periods. Return is in annualized percentage. Returns roughly line up with funding betas in the
post-93 sample, but not in the pre-93 sample. Funding beta is measured by beta with respect to
arbitrageur funding shocks measured by quarterly shocks to the leverage of broker-dealers.

How well does the pricing work in other sample periods? In the pre-93 sample,

the estimated price of risk is actually similar in magnitude to that of the post-

93 sample, but the low t-statistics suggest that the estimate is unreliable. This

suggests that, during this period, arbitrageurs were still small (µ ≈ 0) and did not

have large presence in the 34 anomaly assets.

Combining the two sample periods, however, generates a much larger estimated

price of risk than that in either of the two sample periods. The reason is that

large returns come from the pre-arbitrage period and large betas come from post-

arbitrage period. Hence, pooling them together inflates the price of risk. This

point can be better illustrated using graphs. Figure 4b shows that, during the

post-93 period, the anomalies with larger funding betas command larger expected

returns. However, from the “alphas to betas” regression (Figure 5), we know

that the anomalies with larger post-93 funding betas had even larger expected

returns in the pre-93 period because the anomaly’s pre-93 return was what turned

into post-93 endogenous risk. Furthermore, Figure 4a shows that pre-93 funding
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Figure 5: Pre-93 Long-short Return Predicts Post-93 Arbitrageur Funding Beta
This figure plots the relationship between pre-93 mean long-short return and post-93 funding
beta. The pre-93 (1972-1993) and post-93 (1994-2015) samples proxy for pre-arbitrage and post-
arbitrage periods, respectively. Return is in annualized percentage. Funding beta is measured by
beta with respect to arbitrageur funding shocks measured by quarterly shocks to the leverage of
broker-dealers.

betas were centered around zero, which means that pooling the two samples leads

to an attenuation of funding betas. Putting all this together, pooling the pre-

arbitrage and post-arbitrage periods means that the betas are attenuated while

the expected returns are inflated, which results in an inflated price of risk in the

entire sample (Table 5 and Figure 6). The R2 is slightly below that of the post-93

sample regression since funding betas in the entire sample are essentially white

noise added to post-93 funding betas.

In Adrian, Etula, and Muir (2014) too, the estimated price of risk in the entire

sample is larger than that in the subsamples. There, the estimated price of risk

is (with appropriate scaling to match the price of risk in this paper) is 0.62 in the

pooled sample period of 1968-2009 but 0.21 and 0.18, respectively, in the subsam-

ples 1968-1988 and 1989-2009.40 This is still true even when the price of risk of the

40I take the last two numbers (0.21 and 0.18) from the online appendix to Adrian, Etula, and
Muir (2014) available on Tyler Muir’s website. Their leverage factor is expressed as a percentage
whereas my funding shock is expressed as the original number, so I apply a scaling factor of 100.
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Figure 6: Arbitrageur Funding Beta and Mean Return in the Pooled Sample
(1972-2015)

This figure plots the mean long-short returns and arbitrageur funding betas of 34 equity anomaly
assets over the entire sample period of 1972 to 2015. Return is in annualized percentage. Funding
beta is measured by beta with respect to arbitrageur funding shocks measured by quarterly shocks
to the leverage of broker-dealers.

leverage factor is estimated in a two-factor setting with the market excess return

as the additional factor.41

3.6. Endogenous risk is generated during constrained times

I now test Proposition 4, which predicts that the endogenous covariation between

anomaly asset returns and arbitrageur funding occurs only in times when arbi-

trageurs are constrained. At such times, a favorable funding shock leads them to

dedicate more capital to anomaly assets, increasing their valuations and realized

returns. When they are unconstrained, all anomaly assets are already being fully

exploited, so a variation in arbitrage capital does not lead to variation in the prices

of anomaly assets. Furthermore, during a period in which arbitrageurs are persis-

41This criticism nonetheless applies to this study’s post-93 cross-sectional asset pricing as well.
Because the mass of arbitrageurs µ grew gradually over time even within the post-93 period, by
the same logic as above, the prices of risk estimated from splitting the post-93 period into two are
lower than that estimated from the entire post-93 period.
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tently unconstrained, neither endogenous risks nor abnormal returns should arise

in anomaly assets.

To test these predictions, I first need to identify times when arbitrageurs are

more likely or less likely to be constrained. To proxy for the level (as opposed

to the growth) of the arbitrageur funding condition, I take the four-year moving

average of the arbitrageur funding shock ft,

f MA
t ≡ 1

17

8

∑
s=−8

ft+s, (51)

where s indexes quarter. This proxy for the level of arbitrageur funding is pre-

ferred to a more intuitive measure that simply removes a constant time trend

from the original log leverage series, since such a measure would be exposed to

medium-term changes in the leverage of broker-dealer leverage unrelated to the

funding conditions of arbitrageurs. To mitigate concerns about data mining, I

also try measuring the level of arbitrageur funding condition based on the quar-

terly series of average month-end VIX obtained from the Chicago Board Options

Exchange (CBOE).42 This generates similar results.

Given the measure of arbitrageur funding level, I define “unconstrained” (“con-

strained”) times within the post-93 period as the quarters in which the level of

arbitrageur funding is above (below) the post-93 median. Figure 7 plots the con-

strained and unconstrained quarters based on the baseline moving-average mea-

sure f MA
t . For comparison, I also plot the log leverage series with constant de-

trending and quarterly VIX. Based on either the moving-average of funding con-

dition or VIX (top and bottom figures), the constrained quarters approximately

fall into (i) the late 1990s to early 2000s and (ii) the financial crisis period. The

late-1990s to early-2000s period includes the fall of long-term capital management

(LTCM), the dot-com bubble and crash, and the 2003 mutual fund scandal, which

42The monthly series was downloaded from the CBOE website on August 10, 2016.
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also affected hedge funds. These three events would have contributed to persis-

tently low arbitrageur funding conditions during the period. In contrast, the log

leverage series with constant detrending (middle figure) treats the mid-1990s and

early-to-mid-2010s as constrained quarters. Including these periods as constrained

quarters weakens the results.

I proceed with the moving-average arbitrageur funding f MA
t as the measure of

arbitrageur funding level. With this, I first test whether funding betas arise only

during constrained quarters. Defining a dummy variable 1 (t ∈ Constrained) to

indicate the above-median f MA
t quarters within the post-93 sample, I estimate

rj,t =
(

auncon
j + βuncon

j ft

)
1 (t ∈Unconstrained)+

(
aconst

j + βconst
j ft

)
1 (t ∈ Constrained)+ ε j,t

(52)

in the time series for individual anomaly assets as seemingly unrelated regres-

sions. I then test the following joint hypotheses: funding betas are jointly zero

during the unconstrained time period (βuncon
j = 0); funding betas are jointly zero

during the constrained time period (βconst
j = 0); and change in returns from un-

constrained to constrained times net of funding exposure are jointly zero (aconst
j −

auconst
j ). Theory predicts the first hypothesis but rejects the latter two.

Panel A of Table 6 presents test results. The first two columns show that funding

betas arise only during the constrained period, consistent with the prediction that

arbitrageurs do not generate endogenous risks when they are unconstrained and

all anomalies are fully exploited. The average funding betas are 0.83 and 4.65,

respectively, during the unconstrained and constrained time periods. The last

column tests if anomaly asset returns increase from unconstrained to constrained

times. If constrained times are indeed when arbitrage capital is insufficient to

eliminate anomaly returns, I would expect to see an increase in the zero-beta rate

and hence positive aconst
j − auconst

j . Indeed, the changes aconst
j − auconst

j are jointly

different from zero with a cross-sectional average of 4.26, which loosely implies
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that the zero-beta rate rises by 4.26% from unconstrained to constrained periods.
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Figure 7: Proxies for Constrained and Unconstrained Quarters, Post-93
Each of the three figures plots, for the post-1993 period (1994 to 2015), a series representing the
level of arbitrageur funding condition as well as the “unconstrained” and “constrained” quarters
defined as the quarters in which the level of arbitrageur funding condition is above and below the
median, repsectively. A high value of the series indicates a good funding condition for the first two
figures and bad funding condition for the last figure. The level of arbitrageur funding condition
is proxied by the 4-year moving average of the arbitrageur funding shock (top), the log leverage
of broker-dealers with a constant detrending (middle), and quarterly average of month-end VIX
obtained from CBOE (bottom).
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Panel B of Table 6 asks how well an anomaly’s latent mispricing—its pre-93

long-short return r̄pre
j —predicts the cross-section of unconstrained time betas, of

constrained time betas, and of the change in aconst
j − auconst

j . For instance, the

second column of Panel B is based on the regression

βconst
j = b0 + b1rpre93

j + ηj, (53)

estimated through GMM, as explained in the Appendix. Theory implies that pre-

93 return only predicts the constrained time betas. It should not strongly predict

aconst
j − auconst

j for the following reason. In the model, an anomaly’s abnormal re-

turn is zero if arbitrageurs are unconstrained and min{r̄j,1/E0 [Λ1/Λ0]− 1} if ar-

bitrageurs are constrained at time 0. That is, in the constrained case, all anomalies

should have the same abnormal returns unless the anomaly’s latent mispricing

r̄j is smaller than the abnormal returns arbitrageurs are earning from exploited

assets. This means that, in the cross-section of anomalies, pre-93 return should

predict the change in abnormal return from unconstrained to constrained times

during the post-93 period only for the small subset of anomaly assets that are not

exploited by arbitrageurs during constrained times.

The results in Panel B of Table 6 are consistent with the prediction. Although

the slope coefficients are positive in all columns, pre-93 mean return strongly pre-

dicts only the post-93 constrained time funding betas. The regressions in the first

two columns are illustrated in Figure 8. Anomalies’ funding betas during un-

constrained time are scattered around zero and show no strong relationship with

their latent mispricings measured by pre-93 mean returns. In contrast, funding

betas during constrained times tend to be positive and show a strong positive

relationship with pre-93 mean returns.
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Table 6: Funding Betas Are Generated during Constrained Times

Data-generating process :
rj,t =

(
auncon

j + βuncon
j ft

)
1 (t ∈Unconstrained) +

(
aconst

j + βconst
j ft

)
1 (t ∈ Constrained) + ε j,t

This table analyzes the data-generating process in which anomaly assets’ exposures to arbitrageur
funding as well as their expected returns change from unconstrained to constrained times within
the post-1993 period. The unconstrained and constrained times are proxied by quarters in which
the 4-year moving average of arbitrageur funding shock ft is above the post-1993 median and
below the median, respectively. Panel A reports the mean of the estimated parameters (βuncon

j ,
βconst

j , and aconst
j − auncon

j ) in the cross-section of anomaly assets and jointly tests the hypothesis
that the actual parameter values are zero. Here, the residual return εt is assumed to have zero
serial correlations. Panel B reports the results from the regression that explains an anomaly asset’s
estimated parameters (βuncon

j , βconst
j , and aconst

j − auncon
j ), using its pre-1993 mean long-short return

rpre
j . Here, t-OLS is the t-statistic calculated using only the residuals from the cross-sectional

regression and accounts for a possible heteroskedasticity of residuals across anomaly assets. t-
GMM refers to t-statistic obtained from the GMM estimation procedure and accounts for the effects
of generated regressors and cross-anomaly correlations. Arbitrageur funding shocks are measured
by quarterly shocks to the leverage of broker-dealers.

βuncon
j βconst

j aconst
j − auncon

j

A. Joint Hypothesis Test (e.g., βconst
1 = ... = βconst

J = 0)

Cross-sectional Average 0.83 4.65 4.26
p(jointly zero) 1.00 0.00 0.01

B. Cross-sectional Prediction (e.g., βconst
j = b0 + b1rpre

j + ηj)

Pre-93 Mean Long-short Return rpre
j 0.04 1.86 -0.14

(t-OLS) (0.17) (3.13) (-0.57)
(t-GMM) (0.14) (2.14) (-0.35)

Intercept -0.48 -5.25 4.44
(t-OLS) (-0.29) (-1.19) (3.03)
(t-GMM) (-0.25) (-1.82) (2.53)

Anomalies 34 34 34
Adjusted R2 -0.03 0.27 -0.02
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(b) Predicting Constrained-time Funding β

Figure 8: Mispricing Turns into Endogenous Risk Only in the Constrained
Times

The left figure plots anomaly assets’ betas with respect to arbitrageur funding conditon during
the unconstrained quarters of the post-1993 period on the y-axis and the mean long-short re-
turns during the pre-1993 period on the x-axis. The right figure plots the anomaly assets’ be-
tas with respect to the arbitrageur funding conditions during the constrained quarters of the
post-1993 period. For each anomaly asset, the betas in the unconstrained and constrained peri-
ods are estimated using the time-series regression rj,t =

(
auncon

j + βuncon
j ft

)
1 (t ∈Unconstrained) +(

aconst
j + βconst

j ft

)
1 (t ∈ Constrained) + εt. The unconstrained and constrained quarters are defined

as the quarters in which the level of arbitrageur funding condition—the 4-year moving average of
the arbitrageur funding shock ft—is above and below the median, repsectively. Arbitrageur fund-
ing shock is measured by quarterly shocks to the leverage of broker-dealers.
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4. Auxiliary evidence for endogenous arbitrage risk

In this section, I carry out two additional tests of the endogenous arbitrage risk

model. In Section 4.1, I show that the anomaly assets’ post-93 exposures to the

arbitrageur funding conditions are not explained by fundamental cash-flow ex-

posures. In Section 4.2, I show that two main empirical tests show similar re-

sults if I measure an anomaly’s endogenous risk as the beta with respect to ar-

bitrageur’s portfolio returns, which I proxy using the portfolio returns of equity

market-neutral hedge funds.

4.1. Funding beta is not a fundamental cash-flow risk

In Section 3, I argued that anomaly assets have become endogenously risky due to

arbitrage activity. This implies that the anomalies’ risks are driven by arbitrageurs

generating discount-rate news in the anomalies. Here, I test an alternative expla-

nation, which is that the anomalies’ betas with respect to arbitrageur funding are

driven by their cash-flow exposure to the arbitrageur funding conditions.

To do this, I first obtain cash-flow news of an anomaly asset. Building on the

Campbell-Shiller decomposition (Campbell and Shiller, 1988), Vuolteenaho (2002)

show that a firm’s price-to-book ratio can be decomposed into a discounted sum

of future return-on-equity (ROE) and that of future returns:43

ln
(

MEt−1

BEt−1

)
=

∞

∑
j=0

ρj ln
(
1 + ROEt+j

)
−

∞

∑
j=0

ρj ln
(
1 + Rt+j

)
, (54)

where ROE is defined as the ratio of clean surplus earnings (Xt = BEt − BEt−1 +

Dgross
t ) to the firm’s beginning-of-the-period book equity (BEt−1), and where R

denotes the net return on the firm’s stock. Rearranging (54) gives an expression

43An analogous decomposition of market betas appears in Campbell and Vuolteenaho (2004),
Cohen, Polk, and Vuolteenaho (2009), and Campbell, Polk, and Vuolteenaho (2010).
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that decomposes the firm’s return into cash-flow news and discount-rate news

components:

ri,t − Et−1ri.t =
∞

∑
j=0

ρj (roei,t+j − Et−1roei,t+j
)

︸ ︷︷ ︸
cash-flow news

−
∞

∑
j=1

ρj (ri,t+j − Et−1ri.t+j
)

︸ ︷︷ ︸
discount-rate news

≡ CFi,t + DRi,t,

(55)

where roe and r respectively denote ln (1 + ROE) and ln (1 + R). This means that

anomaly j’s conditional beta with respect to the arbitrageur funding condition ft,

denoted β j,t, can be decomposed into cash-flow and discount-rate betas:

β j,t = ∑i∈I j
wj

i,t
Cov(CFi,t+1, ft+1)

Var( ft+1)
+ ∑i∈I j

wj
i,t

Cov(DRi,t+1, ft+1)
Var( ft+1)

=
Cov

(
NCF

j,t , ft+1

)
Var ( ft+1)︸ ︷︷ ︸

cash-flow beta

+
Cov

(
NDR

j,t , ft+1

)
Var ( ft+1)︸ ︷︷ ︸

discount-rate beta

≡ βCF
j,t + βDR

j,t ,

(56)

where I j represents the constituents of anomaly asset j, wj
i,t is the portfolio weight

of i (which can be negative), and NCF
j,t and NDR

j,t respectively denote cash-flow

and discount-rate news about anomaly j. In summary, an anomaly’s funding beta

can be decomposed into cash-flow beta βCF
j,t and discount-rate beta βDR

j,t , and the

cash-flow beta of an anomaly can be computed using the underlying firms’ ROEs.

In implementing the test, I follow Campbell, Polk, and Vuolteenaho (2010)

in proxying for a stock’s cash-flow news with its ROE adjusted for inflation:

roei,t = ln (1 + ROEt) − 0.4 ln
(
1 + r f ,t

)
, where r f is the risk-free rate. To prevent

shorter-term trends in profitability from driving cash-flow betas, I follow Camp-

bell and Vuolteenaho (2004), Cohen, Polk, and Vuolteenaho (2009), and Campbell,

Polk, and Vuolteenaho (2010) in proxying for a stock’s cash-flow news using a
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Table 7: Cash-flow Exposure Does Not Explain Funding Beta

Panel A: β
CF,post
1 = ... = β

CF,post
J = 0

Panel B: β
post
j = b0 + b1β

CF,post
j + ηj

This table asks if anomaly assets’ cash-flow funding betas explain their exposure to arbitrageur

funding shocks in the post-93 period. Panel A tests the joint hypothesis that the cash-flow fund-
ing betas are jointly zero. Panel B tests how well the cash-flow funding beta explains the cross-
sectional variation in total funding beta. Cash-flow beta of an anomaly is obtained as the beta of
a discounted sum of future cash-flow news with respect to the analogous discounted sum of arbi-
trageur funding shocks. An anomaly’s cash-flow news is calculated by following the procedure of
Campbell, Polk, and Vuolteenaho (2010). Arbitrageur funding shocks are measured by quarterly
shocks to the leverage of broker-dealers.

K = 1 K = 4 K = 8 K = 12

A. Joint Hypothesis Test (e.g., β
CF,post
1 = ... = β

CF,post
J = 0)

Cross-sectional Average -0.52 -1.43 -3.10 -4.85
p(jointly zero) 0.84 0.01 0.00 0.00

B. How much of funding beta is explained by CF beta?

CF Funding Beta βCF
j 1.17 0.33 0.07 0.01

(1.76) (1.13) (0.38) (0.05)

Intercept 3.24 3.10 2.84 2.65
(1.59) (1.41) (1.26) (1.18)

Anomalies 34 34 34 34
Adjusted R2 0.09 0.03 0.00 0.00

Notes: In the parantheses are OLS t-statistics calculated with heteroskedasticity-consistent stan-
dard errors.

discounted sum of realized return on equities:

CFt ≈
K−1

∑
j=0

ρj ln
(
1 + ROEt+j

)
, (57)

where ρ = 0.9751/4 is the quarterly discount rate and K is the number of quarters.

I use K =1, 4, 8, and 12 quarters. When using a discounted sum of ROEs, I use

the analogously discounted sum of arbitrageur funding shocks ft as the factor.

I run two kinds of test on the cash-flow betas of 34 anomaly assets in the post-

93 period. First, I test if the anomalies’ cash-flow funding betas are positive and

jointly different from zero. Second, I test how much of anomalies’ funding betas

are explained by cash-flow betas.
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Table 7 reports the test results. In Panel A, I find that the anomalies’ cash-flow

funding betas are on average slightly negative. This suggests that anomaly assets

do not have positive fundamental exposure to the variation in the arbitrageur

funding conditions. In Panel B, I find that the cash-flow betas are only a small part

of funding betas. Although the anomalies with higher cash-flow funding betas do

tend to have higher total betas, the relationship is not statistically significant, and

both the large intercept and the small R2s imply that most of the total betas remain

unexplained.

A related question is whether the anomalies are linked through the discount-

rate components of their returns. Both the theoretical and empirical results of this

paper suggests that this must occur in the post-93 period with more arbitrage ac-

tivities. Lochstoer and Tetlock (2016) find that, between 1964 and 2015, anomalies

have little commonality in the discount-rate or cash-flow components of their re-

turns. It would be interesting to see whether this continues to be true in the more

recent years with heightened arbitrage activities and with more extreme deciles of

the anomalies. If so, it would be strong evidence against my results.

4.2. Equity market-neutral hedge fund return as an alternative

proxy for shocks to arbitrage capital

Thus far, the empirical tests have used funding beta to measure an anomaly’s

endogenous risk. This is consistent with a model in which shocks to arbitrageur

capital kt = wt + ft come entirely from funding shocks ft, but in reality, shocks to

arbitrageur wealth wt orthogonal to funding shocks may generate large variation

in arbitrage capital. For example, some of the anomaly assets held by arbitrageurs

may underperform for reasons other than the arbitrageur funding conditions, and

such a shock to the portfolio may lead the arbitrageurs to de-lever their other

positions (e.g., Shleifer and Vishny, 1997). This channel of arbitrageur capital

shock would be better measured by the portfolio return of the arbitrageurs.
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In Table 8, I report results from testing Proposition 1 and Proposition 3 using

beta with respect to equity market-neutral hedge fund return (“HF return beta”),

from Hedge Fund Research, as the measure of endogenous risk.44 Consistent with

Proposition 1, an anomaly asset with a larger pre-93 long-short return attains

a larger post-93 hedge fund return beta, although the result is not statistically

significant at the 5% level based on GMM t-statistics. The second column shows

that the result is stronger when I use post-93 hedge fund return correlation as

the dependent variable, since it controls for changes in anomaly assets’ volatilities

unrelated to arbitrageur trading, which would add noise to the estimated post-93

betas. The last column examines the cross-section of anomaly asset returns with

their hedge fund return betas. The estimated price of risk is not large enough to

completely overcome large GMM standard errors, but the R2 of 21% suggests that

hedge fund return betas still help explain the cross-sectional variation in anomaly

asset returns.

Figure 9 visualizes the regression results in the first and last columns of Table 8.

Compared to Figure 5 and Figure 4b, the figures show slightly larger residuals,

suggesting that arbitrageur funding shock is a better measure of shocks to arbi-

trageur capital kt than hedge fund portfolio returns.

44The monthly series was downloaded on June 27, 2016 and converted to quarterly frequency.
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Table 8: Tests Using an Alternative Measure of Shocks to Arbitrage Capital

Mispricing to endogenous risk: β
HF,post
j = b0 + b1rpre

j + ηj

Endogenous risk to expected return: rpost
j = λ0 + λ1β

HF,post
j + ej

This table repeats the baseline regressions in Table 2 and Table 5 using the equity market-neutral
hedge fund return as the measure of arbitrage capital shocks. The equity market-neutral hedge
fund fund return is obtrained by adjusting the market-neutral hedge fund return from Hedge
Fund Research (HFR) by removing a small but significant exposure to market excess returns.
t-OLS in the first two columns is the t-statistic calculated using only the residuals from the cross-
sectional regression and accounts for a possible heteroskedasticity of residuals across anomaly
assets. For the last column, t-OLS is the t-GenReg used in Table 5. Specifically, it refers to t-statistic
corrected for generated regressors but not for cross-anomaly correlations. That is, to obtain the
standard errors accounting for generated regressors, I allow for heteroskedastic residuals ε j for
the mean returns and do the correction derived by Shanken (1992), but under the assumption
of Cov

(
ε j′ , ε j′′

)
= 0 for j′ 6= j′′. t-GMM refers to t-statistic obtained from the GMM estimation

procedure and accounts for the effects of generated regressors and cross-anomaly correlations.
The correlation is reported in percentage (%).

Mispricing Turns into Endogenous Endogenous Risk Explains
Risk (Proposition 1) Expected Return (Proposition 3)

Post-93 HF
Beta β

HF,post
j

Post-93 HF
Correlation

ρ
HF,post
j

Post-93 Mean Return r̄post
j

-short Return rpre
j

Pre-93 Mean Long
0.09 1.27

(t-OLS) (3.84) (2.76)
(t-GMM) (1.85) (2.15)

Post-93 HF Beta β
HF,post
j 1.80

(t-OLS) (1.98)
(t-GMM) (1.41)

Intercept -0.06 -0.47 2.80
(t-OLS) (-0.38) (-0.13) (4.66)
(t-GMM) (-0.26) (-0.10) (3.42)

Anomalies 34 34 34
Adjusted R2 0.25 0.13 0.21
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Figure 9: “Alphas to Betas” and “Intermediary Asset Pricing” Using Equity
Market-Neutral Hedge Fund (HF) Return as an Alternative Measure
of Arbitrage Capital Shock

The figures show that the main results of this paper are robust to using the equity market-neutral
hedge fund (HF) return to measure arbitrage capital shock. The left figure shows that, in the
cross-section of anomaly assets, a large pre-1993 mean long-short return predicts a large post-1993
beta with respect to HF return. The right figure shows that post-1993 mean long-short returns
roughly line up with post-1993 betas with respect to HF return. HF return is measured by the
return on the equity market-neutral hedge fund index provided by Hedge Fund Research (HFR).
The market-neutral hedge fund return is adjusted by removing a small but significant exposure to
market excess returns.
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5. Conclusion

This paper shows that the act of arbitrage generates endogenous risk by turning

assets’ alphas into betas. The act of arbitrage causes the prices of anomaly assets to

comove with shocks to arbitrage capital, and the strength of this comovement—the

beta—depends on the amount of arbitrage capital devoted to each anomaly asset.

Once these betas arise, they explain the anomaly returns that survive in equilib-

rium, since arbitrageurs require a compensation for the risk they themselves have

created.

This paper links two seemingly disparate points of view: limits to arbitrage

and intermediary-based asset pricing. From the limits-to-arbitrage point of view,

this paper represents an extension of the idea that arbitrage activity generates

endogenous risk to a cross-section of differently mispriced anomaly assets. From

the intermediary-based asset pricing point of view, measuring this endogenous

risk as the beta with respect to arbitrage capital shocks allows for a cross-sectional

pricing of anomaly assets.

There are at least three avenues for future research. First, although I use equity

anomalies in the U.S. market as a convenient test laboratory, the model’s implica-

tions apply to any asset pricing anomalies. It would be interesting to empirically

examine if arbitrage has turned mispricings into endogenous risks in other asset

classes or other markets. Second, by a mechanism similar to the one explored in

this paper, arbitrage activity may cause differently mispriced assets to be differ-

ently exposed to crash risks or tail risks.45 One may formalize this conjecture in

a model and take its cross-sectional predictions to data, thereby endogenizing the

cross-sectional exposures to higher-order risks that may be priced in equilibrium

(e.g., Bali, Cakici, and Whitelaw, 2014; Kelly and Jiang, 2014; Amaya, Christof-

45Stein (2009) provides such a framework in a single-asset environment. An extension would
require embedding differently mispriced assets into such a model.
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fersen, Jacobs, and Vasquez, 2015; Bollerslev, Todorov, and Xu, 2015). Third,

this paper implies that arbitrageurs such as hedge funds have strong preferences

over the characteristics of securities that are known to generate abnormal returns.

Hence, in the spirit of Berry, Levinsohn, and Pakes (1995) and Koijen and Yogo

(2016), one can estimate arbitrageurs’ preferences over those characteristics using

institutional holdings data and short interest data. From this, one can infer how

arbitrage trading—through both long and short positions—shapes the liquidity of

the securities with anomaly characteristics.
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Chapter II.
Does Liquidity Cause Market Return Reversals? A

Natural Experiment



6. Introduction

A common explanation for the stock market’s short-horizon reversal is aggregate

liquidity shocks.46 The story is that the market sometimes experiences an ex-

cessive demand for buying or selling stocks immediately. When this happens,

liquidity suppliers require a larger compensation for absorbing the liquidity de-

mand, increasing the expected return from betting against the market (Campbell,

Grossman, and Wang 1993) (CGW).47 This means that the aggregate price move-

ment on that day is more likely to reverse on subsequent days. The causality from

an aggregate liquidity shock to market return reversal, albeit conceptually simple,

has not been tested using an exogenous shock to aggregate liquidity since such a

shock is rarely observed.

This study uses daily temperature variation during the summers of late 19th

to early 20th century Manhattan to identify exogenous variation in aggregate liq-

uidity demand. In the absence of advanced communications and transportation

technologies, trading stocks in this period involved a substantial physical effort.

Naturally, extremely hot summer weather discouraged investors from participat-

ing in the daily stock market, causing a 1.2% decline in New York Stock Exchange

(NYSE) trade volume for every 1 degree Celsius rise in Manhattan temperature in

the summers of 1889-1902.48 Summer heat, however, had little effect on suppliers

of liquidity since they traded stocks using telephones and automatic ticker ma-

chines (Donnan 2011), were located at or near the exchange (Longcore and Rees

1996), and traded stocks for a living. This allows me to interpret the decline in

46From 1926 to 2014, the Standard and Poor’s 500 (S&P 500) index had an average daily return of
0.04% but an average absolute value of the return of 0.74%, implying large short-horizon reversals
that cannot be explained by daily information flow alone.

47Also see Grossman and Miller (1988) for an earlier analysis of supply and demand for market
liquidity.

48See section 7 for Wall Street Journal articles attributing low trade activities on extreme summer
heat.
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trade activity on a hot summer day in Manhattan as due primarily to a decline in

liquidity demand.

Using temperature variation in the summers of 1889 to 1902 to measure exoge-

nous variation in liquidity demand, I find that liquidity demand has a large effect

on market return reversal over a short horizon. A fall in liquidity demand that

generates a 1% drop in daily trade volume increases the daily autocorrelation of

market returns by 0.018. Other measures of market return reversal—the proba-

bility of a market return reversal on the next day and the expected return from a

simple reversal strategy on the market index—consistently decline with the exoge-

nous fall in aggregate liquidity demand. The effect is larger for weekly returns;

a fall in liquidity associated with a 1% drop in weekly trade volume increases

the weekly autocorrelation of market returns by 0.046. Although years 1889-1902

are chosen as the sample period for reasons discussed in section 7, the results are

robust to using alternative sample periods.

I back my findings on aggregate market returns using individual stock prices

collected from the Commercial and Financial Chronicle. I use the collected data to

compute the cross-sectional average reversal profitability of individual stocks that

may better capture the return from aggregate liquidity provision than a reversal

in the market index. This measure of reward from aggregate liquidity provision

as well as the fraction of stocks experiencing a reversal on the next day decrease

as aggregate liquidity demand thins out.

This paper reaffirms that idea that shocks to aggregate liquidity change the re-

quired reward from aggregate liquidity provision and cause short-horizon rever-

sals in a stock market index. This is consistent with the evidence from individual

stock return reversal studies that trades due to an index redefinition—an arguably

exogenous liquidity shocks on applicable stocks—cause price changes that shortly

reverse (Harris and Gurel 1986; Greenwood 2005a).49 To study market index re-

49Related evidence exists on individual stocks. Reversal profitability is higher in illiquid stocks
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turn reversal or the cross-sectional average of individual stock reversals, however,

the literature has relied on aggregate trade volume (CGW) or aggregate volatil-

ity (Nagel 2012) as measures of aggregate liquidity shocks. In contrast, this study

uses exogenous shocks to aggregate liquidity to confirm an effect that is consistent

in direction but larger in magnitude.

The identified effect of aggregate liquidity demand complements but is distinct

from the effect of aggregate liquidity supply. Nagel (2012) shows that reversal

profitability increases with volatility, as liquidity suppliers’ balance sheet capac-

ity deteriorates. This supply-side effect on aggregate market liquidity, however,

moves relatively slowly and is likely to matter only on limited occasions when the

capacity constraint binds for liquidity suppliers. I find this to be true in my data;

focusing on moderate-return events by winsorizing returns at 5% removes the

volatility effect on daily autocorrelation.50 This suggests that day-to-day changes

in aggregate liquidity imbalance and market return autocorrelation are more likely

to be governed by time-varying demand for, rather than supply of, liquidity.

This paper strengthens the case that demand curves for stocks slope down.

First, the estimated effect of liquidity on market returns implies that the demand

for the aggregate stock market slopes down, just as it does for individual stocks

(Shleifer 1986; Avramov, Chordia, and Goyal 2006a). That is, even at the aggre-

gate stock market level, where neither asymmetric information nor limited atten-

tion plays an important role, arbitrageur capital does not immediately counteract

non-informational trades. Put differently, liquidity trades exert a significant price

pressure on the market index, providing an empirical ground for the role played

by noise traders in various asset pricing models (e.g., Grossman and Stiglitz 1976;

(Pastor and Stambaugh 2003; Avramov, Chordia, and Goyal 2006a) and stocks with high trading
activity, a proxy for non-informational trades (Conrad, Hameed, and Niden 1994). Studies have
also shown that uninformed trades create non-fundamental volatility over a short horizon (Hellwig
1980; Wang 1994; Avramov, Chordia, and Goyal 2006b; Koudijs 2015).

50Winsorization has little effect on the relation between volatility and weekly return autocorre-
lation.
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Verrecchia 1982; De Long et al. 1990). Second, the result on the cross-sectional av-

erage of individual stock reversals implies that reversals due to non-informational

trades is a general phenomenon that occurs in a wider set of stocks than stocks

experiencing an index redefinition.

An unanswered question is, what causes the variation in aggregate liquidity

demand in the first place? Although there is no direct way to answer this question,

I find that a reduction in today’s trade volume today due to hot weather does not

lead to an increased trade volume on the next day—discouraged investors do not

substitute their trades intertemporally. This suggests that short-lived motives such

as sentiments, rather than true liquidity needs, underlie the identified demand for

liquidity. This is consistent with speculative trades by retail investors inducing

short-horizon return reversals (Barber, Odean, and Zhu 2009; Foucault, Sraer, and

Thesmar 2011).

This study is related to other strands of literature. First, several studies use

weather to study the impact of investor psychology on stock returns (Saunders

1993; Hirshleifer and Shumway 2003; Kamstra, Kramer, and Levi 2003; Cao and

Wei 2005; Bassi, Colacito, and Fulghieri 2013; Goetzmann, Kim, Kumar, and Wang

2014). I find that weather affected stock market participants’ willingness to trade

prior to technological advancement in the 20th century. Secondly, outside of fi-

nance, studies have documented that hot weather retards economic activity (Dell,

Jones, and Olken 2014 review this growing literature). My study complements

these findings by presenting a high-frequency (daily) relationship between tem-

perature and stock trading activity. Finally, this paper is part of the growing

literature in finance exploiting natural experiments. Two examples are Giroud,

Mueller, Stomper, and Westerkamp (2011), who use unexpected snow to instru-

ment for ski resorts’ operating performance, and Koudjis (2015), who use weather-

induced disruption of news arrival from London to Amsterdam to study the effect

of information on individual stock price volatility.
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The paper proceeds as follows. In section 7, I present historical background,

choose the test sample period, and discuss the data and variables used. In section

8, I quantify the effect of summer temperature on aggregate liquidity by estimating

the temperature effect on aggregate trade volume as well as on the fraction of idle

stocks during the sample period. I present my main empirical results in section 9.

There, I use temperature as an exogenous proxy for aggregate liquidity demand to

estimate its effect on various measures of market return reversal. The final section

concludes.

7. Historical background, data, and measurement

Wall Street sweltered in the recurrence of extreme heat at the start of the new
week. ... [T]he high altitude to which the temperature soared perceptibly
reduced speculative participation in the stock market . . . (“Heat Cuts Down
Volume: Soaring temperature reduces speculative participation in market,”
Wall Street Journal, 16 Jun 1925)

7.1. Hot weather as a proxy for a reduction in liquidity trades

The quote above suggests that extreme summer heat “perceptibly” reduced specu-

lative trades in the daily stock market. If it is true, summer temperature variation

in Manhattan during this period represents exogenous variation in aggregate liq-

uidity demand. How exactly, however, did liquidity demand fall on hotter days?

In this section, I use narrative records to illuminate the mechanism through which

heat reduced speculative trades and to choose an appropriate sample period dur-

ing which that effect was strong.

Three groups of individuals interacted in the late 19th to early 20th century

stock market: ‘outside customers’, ‘brokers’, and ‘traders’. Outside customers

were retail investors and small institutional investors without in-house brokers

or traders on the exchange. They traded stocks through a broker at a ‘commis-

sion house’ (brokerage house) and communicated with the broker in-person by
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traveling to the commission house or through telegraphs, letters, and if available,

telephones.51 Some institutional investors had access to automatic ticker machines

and received continued updates on the market without calling or visiting the com-

mission house.52 Those without automatic ticker machines could observe stock

price movements at the commission house:

Most such houses provided a “customers’ room” where quotations from all
exchanges of which the house is a member are posted on a blackboard as
fast as they come out on the tickers, and the principal newspapers and news
services are kept on file (p.108 of Selden 1919).

Brokers acted as agents for the outside customers and held membership at the

exchange. Upon receiving customer orders from their office partners, usually via

a messenger boy, they went to appropriate posts to execute the trades.

The last group—traders—comprised ‘capitalists’, ‘room traders’, and ‘special-

ists’ who spent the entirety of their working hours at the exchange. Capitalists

were employees of large institutional investors that wished to make large pur-

chases and sales without paying a commission to brokers.53 Room traders made a

living by betting on short-term fluctuations and essentially provided liquidity by

“standing ready to buy a little below the current market or to sell a little above”

(p.85 of Selden 1919). Specialists were the principal providers of liquidity. They

specialized in dealing one or more securities and worked as the auctioneer for bro-

kers in addition to trading on their own.54 Room traders and specialists together

made up the liquidity suppliers at the time.55

51See Selden (1919) and Beckert (2003).

52Approximately 1000 automatic ticker machines existed in bank and brokerage offices in New
York as of 1880 (Donnan 2011).

53The annual cost of membership was over $3,000 a year as of 1917, equivalent to $56,000 in
2014.

54The last four sentences, including the cost of membership in the exchange, are based on
Selden (1919).

55It is unclear whether capitalists also provided liquidity by holding mispriced securities tem-
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Hot weather reduced the demand for trading by outside customers. The reduc-

tion in outside customer orders led to a low attendance in commission houses and

reduced activity of brokers on the exchange, both of which are cited as responsible

for low trading volume:

A slim attendance in commission houses, and the absence of many brokers on
the floor owing to the excessively high temperature, accounted for substantial
reduction in the volume of dealings yesterday (“Score Further Gains in Market
Generally Restrained by Heat,” Wall Street Journal, 20 Jun 1929).

To be fair, heat also affected traders:

The heat had a good deal to do with keeping the market inactive, for it thinned
out the attendance on the floor and left the traders who remained more in-
clined to make themselves comfortable on the seats surrounding the posts . .
. (“Trading restricted,” Wall Street Journal, 23 Jun 1909).

However, while traders may have retreated to seats at the posts or left the posts

entirely without brokers to trade with, they were still required to have physical

presence at the exchange, ready to execute trades when brokers start appearing

again.

This helps clarify the channel through which heat reduced liquidity demand.

On normal days, outside customers put trade orders through brokers, who then

executed the trades by finding liquidity suppliers. On these days, liquidity suppli-

ers had to absorb a large amount of trade volume from outside customers, and so

charged a premium on the liquidity service in the form of a higher likelihood of

reversal. However, on hotter days, outside customers became relatively inactive,

and so did the brokers who acted upon outside customer orders. Without much

demand for their service, liquidity suppliers charged a smaller premium on their

liquidity service, which resulted in a lower likelihood of reversal.

porarily on their balance sheet. Brokers and the three types of traders comprised almost the
entirety of 1,100 members of the NYSE in 1917.
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7.2. Empirical implementation

Although the stock market in the late 19th to early 20th century allows us to

observe exogenous variation in aggregate liquidity demand, executing the idea

empirically requires two considerations. The first is the choice of temperature

that was most important to investors at the NYSE. Manhattan temperature is a

natural choice, but to what extent were NYSE’s outside customers concentrated

near Manhattan? The second is the choice of sample period. Although narrative

records suggest that heat affected stock trading even in late 1920s, technological

progress in the 20th century would have made temperature variation an increas-

ingly noisy measure of liquidity. This implies a trade-off between having a longer

sample and using stronger variation in liquidity demand. I choose 1889 to 1902 as

the default sample period for reasons discussed below.

Manhattan temperature is a natural choice for temperature felt by NYSE in-

vestors, as circumstances in the late 19th to early 20th century dictate that a bulk

of NYSE trades would have originated from New York City. In this period, the

underdevelopment of long-distance communications impaired the competitive-

ness of trading from another city. Long-distance automatic ticker service was

unavailable until 1905, when the service was first set up between New York and

Philadelphia. Before then, it took brokerage houses in other cities an additional

15 minutes to receive market updates from New York, because the employees had

to hand-copy the stock quotations received by Morse on manifold sheets (Tilgh-

man 1961). Furthermore, major cities like Boston and Philadelphia had regional

exchanges that local traders could use, giving investors in these cities less reason

to trade at the NYSE.56 Indeed, I show in section 8 that, controlling for Manhat-

tan temperature, temperatures in other cities have little adverse effect on NYSE

trading volume.

56It is also worth noting that banks and financial services have long had high concentration near
NYSE on Wall Street (Longcore and Rees 1996).
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What is the appropriate sample period? Trade volume data begins in the year

1889, which restricts me to begin the sample then, but no natural choice exists for

the end year. To make a choice, I briefly review technological advancements in the

early 1900s that would have weakened the temperature effect on trading. Large-

scale air conditioning was first introduced to New York in 1903 (Buchanan 2013).

After 1903, as brokerage houses started installing air conditioning, hot weather

would no longer have discouraged outside customers from visiting their brokers.

Transportation and communication technologies underwent significant improve-

ments in the early 1900s. The advent of the New York City subway system in 1904

would have made it easier for outside customers to visit brokerage houses on hot

days. In the late 1800s, telephones and automatic ticker machines were rare, so a

typical investor wishing to make two-way communications or receive continuous

updates on the market would have had to travel to a nearby telephone exchange

or visit the customer’s room at a brokerage house.57 Nevertheless, telephones be-

came more widespread in the early 1900s, with the number of telephones growing

at an annual rate of approximately 20% from 1900 to 1910.58

Based on these facts, I choose to end the sample period in 1902, which is the

last year prior to the aforementioned events that would have weakened the tem-

perature effect. Since the major developments in long-distance communication

occurred after 1902, this choice also ensures that Manhattan temperature is a

good proxy temperature felt by the majority of NYSE investors within the sam-

ple period. Introduction of various technologies, however, was a gradual process,

and no single year—including 1903—represents a clear jump in the technological

progress. I therefore repeat my main analyses with longer sample periods and

show that expanding the sample as far as 1889-1920 has little effect on the sig-

57One in every 300 persons had a telephone in 1890 (U.S. Census Bureau 1975), and approxi-
mately 1000 automatic ticker machines existed in bank and brokerage offices in New York as of
1880 (Donnan 2011).

58The calculation is made based on numbers provided by U.S. Census Bureau (1975).
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nificance of the estimated effects. Within the selected sample period, I only use

data from the summer season to mitigate any seasonal effects and to ensure that

temperature has a monotonically negative effect on outside customer trades.

7.3. Data and measurement

I use NYSE index returns measured by the Dow Jones Industrial Average (DJIA)

and S&P 500, NYSE individual stock prices hand-collected from digital copies of

the Commercial and Financial Chronicle, NYSE total trading volume taken from

the NYSE website, and temperature data obtained from the National Climatic Data

Center (NCDC), all at the daily frequency.

NYSE index returns

Daily NYSE index return is measured by DJIA return for years 1889-1925 and S&P

500 return for 1926-2014. I obtain the DJIA returns from 5/26/1896 to 12/31/1925

from the Dow Jones website, and the prior years’ cumulative-dividend returns are

kindly provided by Schwert (1990).59 I obtain S&P 500 returns from the Center for

Research in Security Prices (CRSP). A notable difference between the two indices

is that DJIA is price-weighted while S&P 500 is value-weighted, but the difference

is likely to be small since larger stocks tended to have higher prices during the

sample period.

Unique data of pre-1903 NYSE individual stock daily returns

Since no daily individual stock data are available prior to 1926, I collect stock

prices and records of all NYSE-listed common stocks in the summers (Jun 11-Sep

10) of 1889 to 1902. This information is hand-collected from the Commercial and

59The Dow Jones data was retrieved in November 2015 from
http://www.djaverages.com/?go=industrial-index-data&report=performance.
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Financial Chronicle (the Chronicle).60 The collected information includes daily

minimum and maximum prices as well as the information on idle stocks (no buy

or sell trade executed) on each day. I then compute daily individual stock returns

as the percentage change in the midpoint price. The Chronicle denotes whether

there was a dividend on a particular day but do not specify the dividend amount.

Since I cannot compute gross-dividend returns without information about the

dividend amount, I simply exclude these observations with dividend payments.

The result is an unbalanced panel of around 90,000 daily individual stock return

observations.

NYSE trading volume

Daily NYSE trading volume over the years 1888-2014 is obtained from the NYSE

website.61 I compute detrended trading volume, Tradvolt, as the log deviation of

daily trade volume per trading hour from its trailing 1-year moving average:

Tradvolt = ln
(

trade volumet

trade hourst

)
− 1

Nt

Nt

∑
s=1

ln
(

trade volumet−s

trade hourst−s

)
(58)

where Nt is the number of trading days in the previous 365 days. This measure

of trading volume is similar to those in CGW and Chen, Hong, and Stein (2001),

except that it uses trading volume instead of share turnover and that it adjusts

for trading hours to make weekday and Saturday trade volumes comparable.62

Without the trading hour adjustment, trade volume is consistently lower on Sat-

60Trading volume is available weekly, and I do not use this information in the paper. The hard
copy of the Chronicle is not available for June 1894, so that month is excluded from my analyses.
The supplementary online appendix to this paper has an example page from the Chronicle.

61The data was retrieved in October 2015 from https://www.nyse.com/data/transactions-
statistics-data-library. The data contains 4 instances in which two volume observations have the
same date, and in those cases, I average the two numbers. None of the dates, however, are in the
period of interest (1889-1902). Analysts from the NYSE kindly went over and removed all other
instances of duplicates.

62Records of the number of total shares outstanding at NYSE are not available from the 19th
century, but using trading volume is equally valid in this study exploiting daily variations.
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urdays (which had shorter trading hours), which causes trade volume to function

as a Saturday dummy. The results in this study are robust to using trade volume

unadjusted for trading hours.

The result is the daily volume series from 1/2/1889 to 12/31/2014, plotted in

Figure 10 for the entire sample, the sample of 1889-1902, and the summer of 1895

(representing the middle of the test sample).63 The detrended volume process

is still fairly persistent with the average daily autocorrelation of 0.73 in the 14

summers of 1889-1902. Although this is not considered near unit root, I do take

the possibility of a spurious regression seriously, conducting placebo tests with

temperatures in other cities and data from later time periods.

63The drop in the volatility of trade volume around 1950 roughly coincides with the end of
Saturday trading. This does not affect my analysis, which focuses on the 1889-1902.
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Figure 10: Detrended Aggregate Trade Volume

The figure plots, for three different time periods, daily detrended NYSE total trading volume. The
detrended volume is computed as the deviation of log total trading volume per hour from its
1-year moving average.
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Manhattan temperature

I obtain daily temperatures in Manhattan Central Park during 1879-2014 from

the NCDC website.64 For additional tests, I also the collect daily temperature of

Cambridge in Massachusetts (MA), Jacksonville in Florida (FL), San Diego in Cal-

ifornia (CA), Oxford in United Kingdom (UK), and Sydney in Australia (AU) dur-

ing 1879-2014 (except that the records of temperature in Cambridge MA start in

1885).65 The collected data consist of daily maximum and minimum temperatures

in degrees Celsius (oC), which I use to predict average trading hour temperature T

on each day. I compute average trading hour temperature under the assumption

that an intraday variation in temperature reaches the daily maximum at 15:00 and

minimum at 5:00 (Lonnqvist 1962) and that the temperature change within a day

is linear in time.

I focus my analyses on the summer season. In particular, I use June 11th to

September 10th, the hottest 90 days of a year when average temperature is com-

puted in 10 days’ interval (Figure 11). Restricting my analyses to the summer

season serves two purposes. First, it prevents seasonality in trade volume as well

as in other variables from affecting the empirical results. Stock trade volume is

known to be lower in the summer (Gallant, Rossi, and Tauchen 1992; Bouman

and Jacobsen 2002; and Hong and Yu 2009), which may be a combination of tem-

perature and seasonal effects (e.g. investors take holidays in hottest parts of the

year). Second, using only the summer season ensures that temperature has a

monotonic effect on human physiology. Sepannen, Fisk, and Lei (2006) show that

task performance in an office environment peaks around 20-22oC and decreases

as temperature increases or decreases from this point. Summer temperature in

64The data was retrieved in July 2013 from http://www.ncdc.noaa.gov/data-access/land-
based-station-data.

65Although the NCDC interface does not allow me to choose five cities in a systematic manner,
I tried to obtain the longest time-series data from scattered geographical locations.
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Figure 11: Manhattan Temperature by 10-Days’ Interval (1889-1902)

The figure plots the average trading hour temperature in Manhattan during the years 1889 to 1902
by 10-days’ interval. The summer period used in the paper (Jun 11-Sep 10) is highlighted in dark
gray. The trading hour average temperature T is estimated from the maximum and minimum
temperatures assuming a linear intraday variation in temperature with the maximum at 15:00 and
minimum at 5:00 (Lonnqvist 1962).

Manhattan is almost always above 22oC, so a rise in temperature is expected to

have only an adverse effect on outside customer trades during the summer season.

Even within the summer, however, temperature exhibits seasonality. To isolate

the temperature effect from the seasonal effect within the summer, I compute

seasonal temperature T as the average trading hour temperature on the same day

for the previous 10 years and include it as an additional control variable. This

is a simple way to control for seasonality within the summer, but I show that

controlling for seasonality through fixed effects produces similar results. In some

analyses, I also use deseasonalized temperature T̃, defined as temperature minus

seasonal temperature.
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Other variables and merged data

Control variables used in this study are conditional volatility of returns (σ2
t or

volatilityt), dummy variables for Friday and Saturday, three dummy variables

indicating single trading holiday, two trading holidays, and three or more trading

holidays until the next trading day. Gallant, Rossi, and Tauchen (1992) use day

of the week dummies to control for the predicted patterns in trading volume

within a week and a variant of trading days’ gap dummies to control for the effect

of having different number of holidays between two consecutive trading days.

While Gallant, Rossi, and Tauchen (1992) construct dummy variables for trading

holidays based on the number of holidays since the previous trading day, I find

that dummy variables based the number of holidays until the next trading day

have a greater explanatory power. Using the alternative specification has little

effect on results.

Return volatility is an important determinant of return autocorrelation. High

volatility reduces the inventory-absorption capacity of market makers, leading

them to require a high compensation for liquidity provision in the form of a low

return autocorrelation (Nagel 2012). Put differently, volatility represents a shock

to liquidity supply, whereas temperature represents a shock to liquidity demand

during the sample period.

I estimate daily return volatility separately in each of the five sample periods to

be defined shortly. I do this using a generalized autoregressive heteroskedasticity

(GARCH) model with two ARCH terms and four GARCH terms, which is a model

selected based on BIC criterion on the pre-1903 data:

rm,t = a0 + a1rm,t−1 + a2rm,t−2 + εt (59)
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where εt ∼ N
(
0,σ2

t
)

and

σ2
t = γ0 +

4

∑
i=1

γiσ
2
t−i + α1ε2

t−1 + α2ε2
t−2 (60)

The time series of daily return volatility for the entire sample, the sample of 1889-

1902, and the summer of 1895 (representing the middle of the test sample) are

plotted in Figure 12. For weekly return volatility, a GARCH model with one

ARCH term and one GARCH term is selected based on BIC.

Merging all data gives individual stock and index returns, detrended trade vol-

ume, temperature, and other controls over June 11st to September 10th of years

1889 to 2014. I divide this into 5 periods (1889-1902, 1903-1920, 1921-1940, 1941-

1960, 1961-2014) and use the earliest period as the test sample. As discussed at the

end of section 9, however, the main results are robust to extending the test sam-

ple period to include all years from 1889 to 1920. The results disappear in later

periods, when temperature has little effect on investor trades. Table 9 presents

descriptive statistics by sample period, which I occasionally refer to in the rest of

the paper.
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Figure 12: Conditional Volatility of Market Returns

The figure plots, for three different time periods, daily conditional volatility of market returns.
Conditional volatility is the conditional standard deviation obtained from a GARCH model with
4 autoregressive and 2 moving average terms. Market returns are proxied by DJIA for years 1889
to 1925 and by S&P 500 for years 1889 to 2014. The values have been multiplied by 100 to be in %
unit.
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Table 9: Descriptive Statistics by Sample Period

Summer is defined as June 11-September 10, the hottest 3 months of the year (see Figure 11).
NYSE index return is measured by the DJIA return during 1889-1925 and S&P 500 return during
1926-2014. When calculating daily autocorrelations, returns are winsorized at the 5% level within
each group (e.g. sample and season) by replacing the top and bottom 5% values by the cutoff
values.

(1) (2) (3) (4) (4)
1889-1902 1903-1920 1921-1940 1941-1960 1961-2014

Daily Manhattan Temperature
Mean (sd) in degrees Celsius

Summer 25.2 24.9 25.4 26.1 26.1
(3.5) (3.6) (3.5) (3.5) (3.5)

All 13.5 13.6 14.1 14.7 14.9
(10.1) (10.1) (10) (10) (9.9)

Daily Detrended NYSE Trade Volume
Mean (sd) of log deviation

Summer -0.16 -0.17 -0.16 -0.07 -0.01
(0.57) (0.59) (0.58) (0.36) (0.24)

All 0.03 0.01 0 0.04 0.05
(0.56) (0.58) (0.51) (0.38) (0.24)

Daily NYSE Index Returns
Mean (sd) in %

Summer 0.05 0.01 0.13 0.04 0.02
(1.02) (0.95) (1.51) (0.78) (0.94)

All 0.02 0.01 0.03 0.05 0.04
(1.02) (1.06) (1.58) (0.76) (1.01)

Mean (sd) conditional volatility in %
Summer 0.92 0.93 1.35 0.73 0.92

(0.49) (0.31) (0.69) (0.19) (0.33)
All 0.94 0.98 1.38 0.74 0.95

(0.41) (0.35) (0.7) (0.2) (0.43)
Autocorrelation coefficient

Summer 0.078 0.041 0.014 0.16 0.087
All 0.03 0.05 0 0.167 0.068

Probability of next-day reversal
Summer 0.47 0.49 0.47 0.43 0.47
All 0.49 0.48 0.48 0.43 0.47
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8. Temperature effect on aggregate liquidity demand

In section 7, I presented anecdotal evidence that hot weather discouraged demand

for liquidity in the sample period. Here, I quantify the size of this effect using

aggregate trade volume and the fraction of idle stocks with no buy or sell order.

8.1. Hot summer reduces trading activity in the summer: An

inter-year regression

Before looking at the temperature effect on trade volume at a daily frequency, I

first show that the effect exists even at an annual frequency. I measure summer

trading activity using total trade volume over the summer as a percentage of total

trade volume over the year (the volumes are before detrending). Then, to test

whether summer trading was lower in hotter years, I regress this quantity on the

average Manhattan summer temperature in the same year:

Summer volumey

Total volumey
= b0 + b1Summer temperaturey + εy (61)

where y indexes a year. For comparison, I repeat this regression in three other

periods.

Table 10 presents the results. Although the small sample size generates a large

standard error, column 1 suggests that summer trading was lower in years with

hotter summers; for each increase in average summer temperature by 1 degree

Celsius, summer trade volume as a fraction of yearly total falls by 2.7%p. The

effect can be observed in a graph. Figure 13 visualizes the regression in column 1

and shows an arguably clear negative relationship between temperature and sum-

mer trading. Since the temperature effect on trading disappears only gradually

over time, I do observe a negative relationship—although not significant at the

10% level—between temperature and volume in the 1903-1920 sample. In the last
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Table 10: High Temperature Reduces Summer Trade Volume (Inter-year)

Summer volumey

Total volumey
= b0 + b1Summer temperaturey + εy

This table reports the inter-year regressions relating NYSE trade volume in the summer to average
Manhattan temperature in the summer. Dependent variable is total trade volume over Jun 11-Sep
10 as a percentage of total trade volume in the year. Explanatory variable is the average trading
hour temperature in Manhattan over Jun 11-Sep 10. Standard errors corrected for heteroskedasticity
are reported in parentheses. *, **, and *** indicate significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5)
1889-1902 1903-1920 1921-1940 1941-1960 1961-2014

T -0.027∗ -0.011 0.009 0.006 -0.000
(0.015) (0.008) (0.013) (0.011) (0.002)

Observations 14 18 20 20 54
R2 0.14 0.06 0.01 0.03 0.00
An intercept is included but not reported.

three samples, the low R2’s imply that temperature has little ability to explain the

variation in summer trading.

8.2. High temperature reduces trade volume: An inter-day

regression

Temperature and trade volume are more strongly related at a daily frequency. To

estimate the daily temperature effect on volume, I regress the trading volume vari-

able (Tradvolt) on Manhattan temperature (Tt), seasonal temperature (Tt), volatil-

ity (σt), and other controls. The inter-year analysis above shows that the inter-year

variation in summer trading can be attributed in part to temperature variation

across different years. However, when analyzing the daily temperature effect of

volume, I take the conservative approach of exploiting only the within-year varia-

tion in trading volume by including year fixed effects. This implies the following

regression specification:

Tradvolt = b0 + b1Tt + b2Tt + b3σt + other controls + year fixed effect + εt (62)
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Figure 13: Summer Temperature and Summer Trade Volume (1889-1902)

This figure plots the average summer temperature in Manhattan on the horizontal axis and to-
tal trade volume in the summer relative to total trade volume over a year in the vertical axis.
The summer period used in the paper (Jun 11-Sep 10) is highlighted in dark gray. The trading
hour average temperature T is estimated from the maximum and minimum temperatures assum-
ing a linear intraday variation in temperature with the maximum at 15:00 and minimum at 5:00
(Lonnqvist 1962).

Table 11 presents the regression results. The effect of temperature (T) is econom-

ically and statistically significant in the test sample, with a rise in temperature by

1 degree Celsius (1.8 degrees Fahrenheit) reducing aggregate NYSE trade volume

by 1.2%.66 When year fixed effect is excluded, the reduction in trade volume is

larger (2.0%), consistent with the previous finding that year-to-year variation in

summer temperature contributes to year-to-year variation in total trading activ-

ity in the summer. This temperature effect on trade volume gradually disappears

over time. In the 1903-1920 sample, the temperature has a negative but statistically

insignificant effect on trade volume. In the latter periods, the magnitudes of the

estimates also get smaller.

What do other parameter estimates imply? Seasonal temperature has a larger

66Although not reported here, I also find that trading volume falls on snowy days in the first
sample period but that low winter temperature does not affect trading volume.
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Table 11: High Temperature Reduces Daily Trade Volume

Tradvolt = b0 + b1Tt + b2Tt + b3σt + other controls + year fixed effect + εt

OLS regression in the summer 1889-1902 sample (columns 1 to 4) and in the later samples
(columns 5 to 8). Dependent variable is daily detrended NYSE trading volume, computed as
the deviation of log total trading volume per hour from its 1-year moving average. Tt and Tt are
temperature and seasonal temperature in Manhattan on day t, respectively. Newey-West HAC
standard errors with 20 lags are reported in parentheses. *, **, and *** indicate significance at 10,
5, and 1 percent, respectively.

1889-1902 1903-20 1921-40 1941-60 1961-2014

(1) (2) (3) (4) (5) (6) (7) (8)

T -0.012∗∗ -0.012∗∗ -0.020∗∗∗ -0.013∗∗ -0.009∗ -0.001 0.002 -0.000
(0.006) (0.006) (0.007) (0.006) (0.005) (0.004) (0.003) (0.001)

T -0.073∗∗∗ -0.071∗∗∗ -0.055∗ -0.075∗∗∗ 0.003 -0.012 0.011 0.008∗∗

(0.015) (0.017) (0.033) (0.014) (0.018) (0.016) (0.010) (0.003)

Volatility 0.404∗∗∗ 0.163∗∗ 0.411∗∗∗ 0.436∗∗∗ 0.370∗∗∗ 0.208 0.141∗∗∗

(0.086) (0.080) (0.087) (0.117) (0.083) (0.162) (0.029)

Year FE Yes Yes No Yes Yes Yes Yes Yes
Controls Yes Yes Yes No Yes Yes Yes Yes
N 1,056 1,056 1,056 1,056 1,321 1,518 1,324 3,424
Controls are a constant and dummy variables for Friday, Saturday, and the number of days until
next trading day.

negative effect on trade volume than temperature itself, which may be due to a

combination of a seasonal effect (e.g. Hong and Yu 2009) and a temperature effect.

As expected, volatility is positively related to trade volume in all sample periods.67

A horse race against temperature in other cities

In section 7, I argued using qualitative evidence that Manhattan temperature is a

good proxy for temperature felt by a large fraction of NYSE investors. If this claim

were correct, I would expect the negative effect of Manhattan temperature on

NYSE volume to remain unaffected when temperature in another city is added to

67Although not reported in the table, day of the week dummies are significant in some periods.
For instance, volume per trading hour is lower on Friday in the 1889-1902 sample but higher
on Friday and Saturday in later samples, when trading technology has improved. Among the
dummy variables for trading holidays, the dummy variable for trading holidays of 3 days or more
is consistently negative, indicating that trade volume falls prior to having a large number of trading
holidays.
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the regression. Therefore, I add temperatures in other cities to the baseline volume

regression, effectively running a horse race between Manhattan temperature and

temperature in other cities.

Table 12 presents the results. Adding temperature and seasonal temperature of

another city has little effect on the coefficient on Manhattan temperature. For ex-

ample, temperature in Cambridge, despite its strong correlation with temperature

in Manhattan, is not found to reduce NYSE temperature. Interestingly, tempera-

ture in San Diego is positively related to NYSE trade volume, which may reflect

that temperature in the West Coast was informative about the productivity of

agricultural and railroad companies.68

68If San Diego weather indeed carried news about a group of stocks, one may be able to use it
to proxy for an exogenous news event.
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Table 12: Temperatures in Other Cities Do Not Reduce NYSE Trade Volume
A Horse Race Between Temperature in Manhattan and Temperatures in Other

Cities

Tradvolt = b0 + b1TNY
t + b2TNY

t + b3TOther
t + b4TOther

t + b5σt
+other controls + year fixed effect + εt

OLS regression in the summer 1889-1902 sample. Dependent variable is daily detrended NYSE to-
tal trading volume, computed as the deviation of log total trading volume per hour from its 1-year
moving average. “NY Tt” and “NY Tt” are temperature and seasonal temperature in Manhattan
on day t, respectively. “Other Tt” and “Other Tt” are temperature and seasonal temperature of the
specified city on day t, respectively. Newey-West HAC standard errors with 20 lags are reported
in parentheses. *, **, and *** indicate significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5)
Cambridge MA Jacksonville FL San Diego CA Oxford UK Sydney AU

NY T -0.016∗ -0.010∗ -0.012∗∗ -0.012∗∗ -0.011∗

(0.008) (0.006) (0.006) (0.006) (0.006)

NY T -0.048∗∗ -0.043∗∗∗ -0.072∗∗∗ -0.066∗∗∗ -0.049∗∗∗

(0.022) (0.014) (0.015) (0.013) (0.017)

Other T 0.004 -0.005 0.026∗∗ 0.003 -0.002
(0.007) (0.011) (0.012) (0.008) (0.008)

Other T -0.036∗∗ -0.079∗∗∗ 0.002 -0.035 0.048∗∗

(0.018) (0.027) (0.029) (0.022) (0.023)

Volatility 0.428∗∗∗ 0.407∗∗∗ 0.386∗∗∗ 0.407∗∗∗ 0.401∗∗∗

(0.095) (0.082) (0.086) (0.084) (0.084)
ρ(T̃,NY T̃) .75 .08 -.07 .01 .02
ρ(T,NY T) .85 .54 .2 .48 -.06
Year FE Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes
Observations 905 1,056 1,056 1,056 1,056
Controls are a constant and dummy variables for Friday, Saturday, and the number of days
until next trading day.
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8.3. Temperature and the fraction of idle stocks

I use the fraction of idle stocks on a given day as an alternative measure of aggre-

gate liquidity and study the effect of temperature on this measure. For 1889-1902,

I use the information collected from the Commercial and Financial Chronicle. I

do not have the daily information on idle stocks during the period 1903-1925, but

for the period 1926-2014, I collect this information from the daily CRSP data.

The definition of an idle stock is as follows. For the 1889-1902 collected data,

a stock is defined as idle if either a buy or sell transaction did not occur for the

stock on that day. For the 1926-2014 CRSP data, a stock is defined as idle if its

closing price is a bid/ask average (price is marked with a negative symbol) or

is unavailable (price is marked zero). When using the CRSP data, I restrict my

attention to common stocks (share code 10 and 11) traded on the NYSE (exchange

code 1).

The estimated effect of temperature on the fraction of idle stocks, controlling a

long-term trend in the fraction through year fixed effects, is presented in Table 13.

The contrast between the sample period and the other periods is stark. During

1889-1902, a rise in temperature by 1 degree Celsius increases the fraction of idle

stocks by 0.2%p, consistent with the notion that fewer outside customers show up

to trade on hotter days. In contrast, temperature has no significant effect on the

fraction of idle stocks in the later periods.

The negative coefficients on volatility imply that the fraction of idle stocks tends

to fall in times of high volatility. Although high volatility may reduce the supply

of liquidity, there is no reason to expect more idle stocks when liquidity supply

has deteriorated. Rather, a heightened volatility seems to make investors more

attentive to even the smaller stocks which may be less likely to be traded in normal

times. The volatility effect falls in magnitude over time as the improvement in

trading technology allows even the smallest stocks to be traded relatively easily,

reducing the average fraction of idle stocks on any given day.
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Table 13: High Temperature Increases the Fraction of Idle Stocks

Number of idle stockst

Total number of stockst
= b0 + b1Tt + b2Tt + b3σt + other controls + year fixed effect + εt

OLS regression in the summer 1889-1902 sample (column 1) and in the later samples (columns
2 to 4). Dependent variable is the percentage of idle common stocks in the daily market at the
NYSE. Coefficients are multiplied by 100 to be in % unit. Tt and Tt are temperature and seasonal
temperature in Manhattan on day t, respectively. Newey-West HAC standard errors with 20 lags
are reported in parentheses. *, **, and *** indicate significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4)
1889-1902 1926-1940 1941-1960 1961-2014

T 0.215∗∗ -0.039 -0.014 0.003
(0.106) (0.080) (0.048) (0.004)

T 1.219∗∗∗ -0.111 -0.080 0.013
(0.285) (0.282) (0.149) (0.010)

Volatility -6.566∗∗∗ -6.494∗∗∗ -2.174 -0.293∗∗∗

(1.158) (1.341) (1.633) (0.113)

Constant -4.806 52.569∗∗∗ 10.080∗∗ 0.168
(7.802) (8.338) (4.026) (0.245)

Year FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Observations 1,018 1,138 1,324 3,424
Controls are dummy variables for Friday, Saturday, and the number of
days until next trading day.

9. Aggregate liquidity demand and market return

reversals

Previous sections provided anecdotal and quantitative evidence that temperature

variation in the sample period generates exogenous variation in liquidity demand.

This section uses this aggregate liquidity demand shock to test the effect of aggre-

gate liquidity demand on market return reversals.
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9.1. Daily market return reversal

The primary measure of market return reversal is the daily autocorrelation of

market returns studied in CGW. As I show below, however, this measure is fairly

sensitive to the treatment of outliers. Therefore, I study two additional measures

of market return reversal: return on a simple reversal strategy on the market index

and the probability of a next-day reversal in the market index.

The effect of liquidity demand on the autocorrelation of market returns

I study daily autocorrelation of market index returns by allowing temperature and

other controls to affect the daily autocorrelation coefficient:

rm,t+1 = a0 +
(
b0 + b1Tt + b2Tt + b3σt + other controls + year fixed effect

)
rm,t + εt+1

(63)

This specification with daily returns on both sides of the equation is exposed to

influence of outliers. To curtail the influence of outliers, I winsorize returns at

the 5% and 95% levels, which correspond to cutoff values of −1.38% and 1.47%,

respectively, during the sample period.69

The outcome of the regression is reported in Table 14. A fall in liquidity de-

mand associated with a 1 degree Celsius rise in temperature increases the daily

autocorrelation coefficient by 0.022. To put this in context, this means that a fall

in liquidity demand equivalent to a 1% fall in aggregate trade volume (Table 11)

increases the autocorrelation of daily market returns by 0.018.70 Also, since tem-

perature has a standard deviation of 3.5 during the sample period, it follows that

a one standard deviation fall in liquidity demand increases the return autocorrela-

tion by 0.077 (see Table 9 for the standard deviation). The coefficients on T tell us

69See, e.g., Pinegar 2002 for the importance of taming the outliers.

70Given by 0.022/1.2 = 0.018, where 1.2% is the fall in aggregate trade volume as a result of a 1
degree Celsius rise in temperature (Table 11).
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Table 14: Liquidity Demand Lowers Autocorrelation in Market Returns

rm,t+1 = a0 +
(
b0 + b1Tt + b2Tt + b3σt + other controls + year fixed effect

)
rm,t + εt+1

OLS regression in the summer 1889-1902 sample. Dependent variable is daily NYSE index return
measured by the DJIA return. Tt and Tt are temperature and seasonal temperature in Manhattan
on day t, respectively. Tt serves as an exogenous proxy for a reduction in aggregate liquidity
demand. Winsorization replaces values outside the chosen percentile cutoffs with values at the
cutoffs. Newey-West HAC standard errors with 20 lags are reported in parentheses. *, **, and ***
indicate significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
T 2.2∗∗ 2.0∗∗ 2.5∗∗∗ 2.1∗∗ 1.9∗∗ 1.7∗ 1.2 -1.1

(0.9) (0.9) (0.9) (0.9) (0.9) (0.9) (1.3) (2.3)

T -0.6 -1.9 -0.8 -0.9 -0.8 -3.4 2.2 2.4
(2.2) (2.4) (2.1) (2.1) (2.1) (2.2) (2.8) (2.9)

Volatility -10.8 -5.2 -11.8 -5.2 -1.2 -10.1 -19.7∗∗ -18.5∗∗∗

(8.2) (9.0) (7.5) (8.8) (4.6) (8.4) (8.3) (6.8)

Tradvol -22.4∗∗∗ -22.6∗∗∗

(8.4) (8.2)

T̃2 -0.4
(0.2)

Year FE Yes Yes Yes Yes Yes No Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes No Yes Yes
Winsorize 5% 5% 5% 5% 5% 5% 5% 1% No
N 1,056
Excludes controls. Coefficients expressed in 1/100.

that seasonal variation in temperature has little influence on market return rever-

sals. The negative coefficient on the squared deseasonalized temperature implies

that the marginal effect of temperature on autocorrelation falls as temperature

rises; this may be due to a decreasing marginal effect in the temperature-liquidity

relation or in the liquidity-autocorrelation relation.

Comparing columns 1, 8, and 9 of the table shows that the effects of temperature

and volatility are both sensitive to the treatment of outliers. With winsorization

at 5%, liquidity demand (temperature) significantly affects the return autocorrela-

tion, but volatility does not. In contrast, the opposite happens with winsorization

at 1% or with no winsorization; the estimated effect of liquidity demand becomes

insignificant, but the effect of volatility becomes significant. This implies that the

104



volatility effect is concentrated in a small number of large return events. In terms

of magnitude, a one standard deviation increase in volatility (0.49; see Table 9)

leads to a fall in autocorrelation coefficient by 0.091.

Winsorization, however, has little influence on the effect of trade volume. Even

with the 5% winsorization, trade volume retains negative relation to autocorrela-

tion. The coefficient of −0.226 is similar in magnitude to that in CGW (−0.212

to −0.427, depending on sample period), implying that the estimated effect of

trade volume is similar to that in CGW (sample period 1962 to 1988) is part of the

evidence that the market environment in the past was similar to what it is now.

The magnitude of the estimated effect implies that a one standard deviation rise

in trade volume (0.64; see Table 9) leads to a fall in autocorrelation coefficient by

0.143.

The results indicate that day-to-day variation in liquidity demand shapes the

reversal behavior of market index returns. Although the link between aggregate

liquidity and market return reversal has been established in previous studies, the

exogeneity of temperature, and its effect on liquidity demand, are strong evidence

of causality. When demand for liquidity falls, as it does on hotter days in the sam-

ple period, market returns exhibit a higher autocorrelation and thus a decreased

likelihood of a reversal.

The estimated effect of liquidity demand on autocorrelation using temperature

is approximately 8 times the magnitude estimated using trade volume, implying a

large attenuation bias when trade volume is used to proxy for aggregate liquidity

demand. The coefficient on temperature implies that a 1 degree Celsius rise in

temperature that leads to a decrease in total trade volume by about 1% causes

the autocorrelation to increase by 0.018. On the other hand, when volume falls

by 1% for a unspecified reason, return autocorrelation is expected to increase by

just 0.0023 (0.226× 0.01), about 1/8 of the effect estimated using temperature. A

corollary is that only about 1/8 of the variation in daily trade volume can be
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attributed to changes in liquidity demand. Attenuation bias is therefore large,

and the magnitude of the coefficient on trade volume does not allow for an easy

economic interpretation.

This autocorrelation study also suggests that the variation in volatility generates

a meaningful variation in liquidity supply only during substantially volatile times

with large absolute values of returns. Although one could argue that the estimated

effect without winsorization is spurious, models of financial intermediation with

a VaR constraint (e.g. Brunnermeier and Pedersen 2009; Adrian and Shin 2010)

provides an alternative interpretation. A small swing in the market leads to only

a small increase in the conditional volatility, in which case the market maker’s

balance sheet would not reach the VaR constraint. A series of large movements in

the market, however, can lead to a substantial increase in the conditional volatility

to make the market maker’s VaR constraint bind, limiting the market maker’s

ability to absorb liquidity demand.

What one cannot conclude from this study is whether the disappearance of the

temperature effect under no winsorization implies that liquidity demand is unim-

portant in volatile times or that temperature variation does not lead to liquidity

demand variation in such times. Even if liquidity demand affects autocorrelation

in all times, if large swings in market returns alert even the outside customers

and induce them to trade despite hot weather, the temperature-autocorrelation

relation would disappear in such times. This point is similar to that made earlier

about the quadratic effect of temperature on market return autocorrelation.

The estimated impact of liquidity demand on market return autocorrelation is

strong but hinges on winsorization of returns. Thus, I consider two alternative

measures of short-horizon reversal in market returns—return on a simple reversal

strategy on the market and the likelihood of reversal in the market return—which

I analyze next.
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The effect of liquidity demand on a simple reversal strategy return on the

market

A return autocorrelation regression can be understood as using past return infor-

mation to forecast future returns. However, one may try predicting future returns

without past return information, relying solely on the hypothesis that market re-

turn is more likely to reverse following a heightened demand for liquidity.

I implement this idea by studying returns on the simple strategy that goes long

1 dollar of the market index if the market goes down today and short 1 dollar of

the market index if the market goes up today:

rrev
t+1 ≡ rm,t+11 (rm,t < 0) (64)

If liquidity demand indeed helps predict reversal on the next trading day, tem-

perature today should negatively predict expected return on this strategy. Thus,

I regress return on this strategy tomorrow on today’s temperature and other con-

trols,

rrev
t+1 = b0 + b1Tt + b2Tt + b3σt + other controls + year fixed effect + εt+1 (65)

and test if b1 = 0 as a usual. I do this without winsorizing the return data because

return now only appears in the left-hand side of the equation, mitigating the

outlier effect that occurred in the previous specification with return on both sides

of the equation.

Table 15 reports the results. Even if the information about today’s return is

omitted, variation in liquidity demand associated with temperature change helps

predict reversal of market return on the next trading day. In particular, a 1 de-

gree Celsius rise in temperature reduces the expected return from betting against

today’s market index movement by 2.2 basis points, or 2.2% of the standard devi-
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Table 15: Liquidity Demand Increases Return on A Simple Reversal Strategy on
the Market

rrev
t+1 = b0 + b1Tt + b2Tt + b3σt + other controls + year fixed effect + εt+1

OLS regression in the summer 1889-1902 sample. Dependent variable is rrev
t+1 = rm,t+1 × 1 (rm,t < 0),

where rm,t is the NYSE index return on day t as measured by the DJIA return. Coefficients are
multiplied by 100 to be in % unit. Tt and Tt are temperature and seasonal temperature in Manhattan
on day t, respectively. Tt serves as an exogenous proxy for a reduction in aggregate liquidity demand.
No winsorization is done on the data. Newey-West HAC standard errors with 20 lags are reported
in parentheses. *, **, and *** indicate significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5) (6) (7)
T -0.022∗∗∗ -0.021∗∗ -0.026∗∗∗ -0.022∗∗∗ -0.021∗∗ -0.019∗∗

(0.009) (0.009) (0.009) (0.008) (0.008) (0.008)

T 0.007 0.016 0.010 0.007 0.008 0.026
(0.022) (0.023) (0.021) (0.021) (0.022) (0.021)

Volatility 0.199 0.149 0.212 0.144 -0.157∗ 0.207
(0.156) (0.164) (0.151) (0.163) (0.086) (0.152)

Tradvol 0.124∗ 0.133∗∗

(0.071) (0.068)

T̃2 0.004∗∗

(0.002)
Year FE Yes Yes Yes Yes Yes No Yes
Controls Yes Yes Yes Yes Yes Yes No
Observations 1,056 1,056 1,056 1,056 1,056 1,056 1,056
Controls are a constant and dummy variables for Friday, Saturday, and the number of days
until next trading day.

ation.71 The effects of volatility and trade volume, however, are not strong enough

to overcome the increased noise in the prediction exercise.

Liquidity demand and the likelihood of a next-day market return reversal

The last measure of daily reversal is the likelihood of a next-day return reversal

in the market index. Despite the information loss associated with discretizing

the market return behavior into a binary event of reversal and non-reversal, this

approach has the advantage of being less subject to the influence of outlier returns.

For this, I define reversalt+1 ≡ 1 [rm,trm,t+1 < 0] as the event that the market return

71The standard deviation of this simple reversal strategy is 1.02% during the sample period.
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rm,t has a reversal on the next trading day. I then use the logit specification to

study how liquidity demand influences the probability of a reversal:

ln
(

Pr [reversalt+1 = 1]
Pr [reversalt+1 = 0]

)
= b0 + b1Tt + b2Tt + b3σt +other controls+year fixed effect+ εt+1

(66)

Table 16 reports the results in terms of marginal effects from the mean values

of the covariates. The fall in demand associated with a 1 degree Celsius rise in

temperature reduces the probability of market return reversal by 1.5%p. On the

other hand, neither volatility nor trade volume significantly affects the likelihood

of a reversal. This again suggests that the effects of volatility and trade volume on

return autocorrelation are concentrated in a small number of large return events,

consistent with the effect of volatility on return autocorrelation disappearing with

the 5% winsorization. Seasonal temperature shows that a reversal becomes more

likely during seasonably hotter days in the summer, suggesting that the supply

of liquidity may be low on these days for seasonal reasons. Finally, including

the squared deseasonalized temperature term has little effect on estimated coeffi-

cients.

9.2. Weekly market return reversal

Thus far I have focused on daily market returns. The results, however, extend to

the autocorrelation of weekly market returns.

To conduct weekly regressions, I redefine variables to have a weekly horizon.

Market return is still the DJIA return but is measured over a week. Weekly tem-

perature, seasonal temperature, and deseasonalized temperature are defined as

their average daily values over a week. Volatility, as explained in section 7, is the

conditional volatility of weekly market return. Trade volume is defined as the

total NYSE trade volume over a week, stochastically detrended using the prior 52

weeks’ moving average. Day of the week dummies and trading days’ gap dum-
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Table 16: Liquidity Demand Increases Likelihood of Market Return Reversal

ln
(

Pr [reversalt+1 = 1]
Pr [reversalt+1 = 0]

)
= b0 + b1Tt + b2Tt + b3σt + other controls + year fixed effect + εt+1

Logistic regression in the summer 1889-1902 sample. Dependent variable is the binary vari-
able indicating the event that the NYSE index return switches the sign on the next trading day
(1 = reversal, 0 = no reversal). NYSE index return is measured by the DJIA return. Tt and Tt

are temperature and seasonal temperature in Manhattan on day t, respectively. Tt serves as an
exogenous proxy for a reduction in aggregate liquidity demand. The table reports the marginal
effects from the mean values of the covariates. Standard errors corrected for heteroskedasticity
are reported in parentheses. *, **, and *** indicate significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5) (6) (7)
T -0.015∗∗∗ -0.015∗∗∗ -0.016∗∗∗ -0.015∗∗∗ -0.014∗∗∗ -0.014∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

T 0.021∗ 0.022∗ 0.022∗ 0.022∗ 0.016 0.030∗∗∗

(0.012) (0.012) (0.012) (0.012) (0.011) (0.011)

Volatility 0.084∗ 0.078 0.087∗ 0.078 -0.005 0.087∗

(0.051) (0.053) (0.051) (0.052) (0.032) (0.050)

Tradvol 0.013 0.011
(0.039) (0.037)

T̃2 0.001
(0.001)

Year FE Yes Yes Yes Yes Yes No Yes
Controls Yes Yes Yes Yes Yes Yes No
Observations 1,056 1,056 1,056 1,056 1,056 1,056 1,056
Controls are a constant and dummy variables for Friday, Saturday, and the number of days
until next trading day.

mies are no longer necessary.

Using the sample period (summers of 1889-1902), I estimate the weekly market

return autocorrelation via specification (63) and report the results in Table 17. I

find that a rise in weekly temperature by 1 degree Celsius increases the weekly re-

turn autocorrelation by 0.17. This effect is larger than that for daily returns. Since

a rise in weekly temperature by 1 degree Celsius decreases the weekly aggregate

trade volume by 3.7% (not reported in tables), it follows that a fall in liquidity de-

mand generating a 1% drop in aggregate trade volume lowers the weekly return

autocorrelation by 0.046 (compared to 0.018 for daily returns). As weekly returns
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Table 17: Liquidity Demand Lowers Autocorrelation in Weekly Market Returns

rm,t+1 = a0 +
(
b0 + b1Tt + b2Tt + b3σt + other controls + year fixed effect

)
rm,t + εt+1

OLS regression in the summer 1889-1902 sample. Dependent variable is weekly NYSE index
return measured by the DJIA return. Tt and Tt are average daily temperature and seasonal tem-
perature in Manhattan in week t, respectively. Tt serves as an exogenous proxy for a reduction
in aggregate liquidity demand. Winsorization replaces values outside the chosen percentile cut-
offs with values at the cutoffs. Newey-West HAC standard errors with 4 lags are reported in
parentheses. *, **, and *** indicate significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)
T 17.2∗∗ 13.1∗∗ 21.7∗∗∗ 16.3∗∗ 14.5∗∗ 17.1∗∗ 11.1∗∗

(6.8) (6.3) (7.2) (8.2) (6.4) (6.7) (5.0)

T -18.9∗∗ -13.6 -23.5∗∗ -12.8 -10.1 -19.0∗∗ -11.3
(9.2) (8.4) (10.0) (11.0) (9.3) (9.1) (7.8)

Volatility -55.4∗∗∗ -53.8∗∗∗ -60.3∗∗∗ -49.7∗∗∗ -14.0 -55.0∗∗∗ -52.0∗∗∗

(17.7) (17.3) (15.7) (18.4) (10.6) (17.5) (14.3)

Tradvol -78.4∗∗∗ -94.2∗∗∗

(23.3) (27.1)

T̃2 -3.4∗∗

(1.6)
Year FE Yes Yes Yes Yes Yes No Yes Yes
Winsor No No No No No No 1% 5%
N 196 196 196 196 196 196 196 196
An intercept is included but not reported. Coefficients expressed in 1/100.

tend to have less outliers than daily returns, the estimated effect of temperature is

statistically significant with or without winsorization.

Both volatility and volume have large effects on weekly return autocorrelation.

Conditional volatility of weekly returns has a standard deviation of 0.79 in the

sample period, so a one standard deviation rise in volatility leads to a large fall in

return autocorrelation of 0.44 (0.79 times −0.554 in column 1). Trading volume has

a standard deviation of 0.51 in the sample period, implying that a one standard

deviation rise in volume leads to a fall in return autocorrelation by 0.40 (0.51 times

−0.784 in column 2). The effects of temperature, volatility, and volume on return

autocorrelation are all larger for weekly return than for daily returns, suggesting

that a weekly liquidity event may be a more accurate measure of risk that market
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makers care about.

9.3. Reward from aggregate liquidity provision

Although the impact of aggregate liquidity demand on market return reversal

has been explained in the context of liquidity suppliers requiring a premium for

betting against the market index, the exact positions held by liquidity suppliers

may differ from the composition of the market index. That is, liquidity suppliers

are likely to have a large position on stocks with large short-horizon movements,

not just on stocks with larger market capitalizations.

For this reason, researchers have looked at a more direct proxy for liquidity

suppliers’ positions to study the impact of aggregate liquidity on reward from ag-

gregate liquidity provision. (Lehman 1990; Lo and MacKinlay 1990; Nagel 2012).

Following this line of work, I use individual stock price data from 1889-1902 to test

whether the exogenous variation in liquidity demand affects liquidity suppliers’

expected returns. I also look at the fraction of individual stocks having reversal

on the next trading day as another measure of reward from liquidity provision.

Lehman (1990) and Nagel (2012) suggest proxying for return on aggregate liq-

uidity provision using

Lt+1 =
N

∑
i=1

ωi,tri,t+1 (67)

with the time-t position on stock i given as

ωi,t = −
ri,t − rEW

m,t
1
2 ∑N

i=1
∣∣ri,t − rEW

m,t
∣∣ (68)

where i = 1, .., N indexes the individual stocks, and rEW
m,t = N−1 ∑N

i=1 ri,t is the equal-

weighted market index return between t − 1 and t. The numerator of portfolio

weight ω assumes that market makers have negative position on stocks that out-

perform the equal-weighted market index and positive position on stocks that

underperform the index. The denominator adjusts the portfolio weight based on
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the assumption that a dollar of either long or short position requires 50 cents—that

the required margin is a constant 1/2 for all stocks and all times (Nagel 2012). The

denominator adjustment also implies that the market maker’s asset position in the

strategy is constant over time, unaffected by time-varying volatility.72

If Lt+1 is an accurate proxy for return on liquidity provision, I would expect it

to be lower following a hotter day (high Tt), when aggregate liquidity demand is

lower and market makers thus require lower compensation for providing liquidity;

i.e., ∂Et [Lt+1]/∂Tt < 0. To test this, I regress Lt+1 on temperature Tt and other

controls:

Lt+1 = b0 + b1Tt + b2Tt + b3σt + other controls + year fixed effect + εt+1 (69)

Since daily returns on individual stocks are unavailable in the late 19th to early

20th century, I use the hand-collected data discussed earlier to compute {Lt} (ex-

cept for June 1894, when data are unavailable).

The regression results are presented in columns 1 through 6 of Table 18 (coeffi-

cients are multiplied by 100 to be in % unit). Consistent with the hypothesis, an

increase in temperature lowers the expected return from liquidity provision. An

increase in Manhattan temperature by 1 degree Celsius lowers the expected return

on liquidity provision by 4.7 basis points, or 1.7% of the standard deviation.73

This temperature effect remains largely unchanged under different specifications

except that the effect becomes insignificant when year fixed effects are removed.

This suggests that the return on aggregate liquidity provision undergoes large

changes over different years for reasons other than temperature (e.g., increased

competition in market making).

72Nagel (2012) discusses two other proxies for return on liquidity provision, and these use dif-
ferent denominator adjustment from the one this proxy uses. Using these other proxies generates
similar results.

73The standard deviation of this return over the first sample is 2.9%.
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Table 18: Liquidity Demand Increases Reward from Aggregate Liquidity Provi-
sion

OLS regression in the summer 1889-1902 sample. Dependent variable is the market maker’s daily
return from aggregate liquidity provision in columns 1 to 6 (see section 9.3) and the fraction
of stocks having reversal on the next trading day in column 7. Coefficients are multiplied by
100 to be in % unit. Tt and Tt are temperature and seasonal temperature in Manhattan on day
t, respectively. Tt serves as an exogenous proxy for a reduction in aggregate liquidity demand.
Newey-West HAC standard errors with 20 lags are reported in parentheses. *, **, and *** indicate
significance at 10, 5, and 1 percent, respectively.

Reward from aggregate liquidity provision % Reversed

(1) (2) (3) (4) (5) (6) (7)

T -0.047∗∗ -0.051∗∗ -0.045∗ -0.031 -0.048∗∗ -0.281∗∗

(0.024) (0.024) (0.024) (0.024) (0.022) (0.143)

T 0.163∗ 0.143∗ 0.166∗∗ 0.139∗ 0.194∗∗ 0.082
(0.083) (0.084) (0.083) (0.084) (0.090) (0.301)

Volatility 1.075∗∗∗ 1.190∗∗∗ 1.212∗∗∗ 0.680∗∗∗ 1.057∗∗∗ 3.813∗∗

(0.248) (0.232) (0.238) (0.185) (0.261) (1.817)

Tradvol -0.276∗ -0.333∗∗

(0.145) (0.155)

Year FE Yes Yes Yes Yes No Yes Yes
Controls Yes Yes Yes Yes Yes No Yes
Observations 1,016 1,016 1,016 1,016 1,016 1,016 1,016
Controls are a constant and dummy variables for Friday, Saturday, and the number of days
until next trading day.

Expected return on liquidity provision tends to fall as seasonal temperature rises

(T). One way to rationalize this is that the number of liquidity suppliers tends to

fall in predictably hotter parts of the summer. Although this would be consistent

with the earlier observation that the fall in aggregate trade volume on seasonably

hot days is larger than what the temperature effect alone would predict, I refrain

from extrapolating too much based on this result.

As noted in Nagel (2012), high volatility increases the expected return from ag-

gregate liquidity provision. The interpretation is that the supply of liquidity falls

with volatility because volatility reduces market makers’ ability to hold additional

inventory on their balance sheets. Finally, controlling for temperature, aggregate
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trade volume negatively predicts return on liquidity provision.74 This would be

true if an unusual trade volume were a proxy for private information flow for in-

dividual stocks with large movements (Wang 1994), but conflicts with the notion

that an unusual trade volume indicates a flow of speculative trades (CGW). One

way to make sense of this puzzling result is that, since the return on aggregate

liquidity provision here treats each stock equally regardless of its size (equation

68 does not use information about the size of each stock), it overrepresents the

private information channel of small stocks.

Column 7 of Table 18 shows the impact of liquidity demand on the fraction of

stocks with a next-day reversal. The result is again consistent with a fall in liquid-

ity demand lowering the market maker’s expected return: a rise in temperature by

1 degree Celsius reduces the fraction of individual stocks with a next-day reversal

by 2.9%p.

9.4. Further discussions and robustness checks

The results in this section suggest that that a fall in liquidity demand associated

with a rise in temperature leads to an increased autocorrelation of short-horizon

market returns and thus a lower likelihood of a market return reversal. An unan-

swered question is, what is the nature of this aggregate liquidity demand captured

by the variation in temperature? Are these trades motivated by correlated liquid-

ity needs or by correlated sentiments?

To tease out the liquidity story from the sentiment story, I test for the presence

of pent-up liquidity. If investors trade less on hotter days because they are post-

poning to resolve their liquidity needs, the unresolved need for liquidity would

be manifested as a heightened level of trade on the next trading day. On the other

hand, if investors wanted to trade for short-lived motives such as sentiments, the

74Cooper (1999) also finds that return on reversal strategy on NYSE-AMEX stocks declines with
trading activity.
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unresolved need for liquidity is likely to disappear by the next trading day.

As a simple test, I regress day-t trade volume on the previous trading day’s

temperature and test if the coefficient is positive; i.e., I test if hot weather on the

previous trading day leads to more pent-up liquidity today. I also try regress-

ing day-t trade volume on today’s temperature interacted with temperature on

the previous trading day; i.e., I test if hot weather on the previous trading day

increases the potential demand for liquidity today so that the same increase in

temperature leads to a greater reduction in trade volume. I measure the previous

day’s weather with either the dummy variable for deseasonalized temperature

higher than the one standard deviation or simply with the original deseasonal-

ized temperature variable.

The results, reported in Table 19, are inconsistent with investors postponing to

resolve their liquidity needs. Previous day’s hot weather tends to decrease the

trade volume next day. Also, the contemporaneous impact of temperature on

trade volume does not significantly increase if the previous day’s temperature is

higher. This suggests that the liquidity demand identified in this study through

temperature variation is driven by short-lived motives like sentiments.

This paper relies on the identification assumption that Manhattan temperature

variation in the summer determined demand for liquidity at the NYSE in the

period prior to relevant technological advancement. I then determine the appro-

priate test sample period to be 1889-1902 based on evidence that this marks the

period prior to the introduction of most technologies that eased stock trading on

hot summer days. Although the year 1902 is chosen as the last year of the sample

period based on the introduction of large-scale air conditioning in 1903, the choice

is admittedly arbitrary. Here, I show that the results are not sensitive to how far

into the 20th century the test sample period is extended.

This paper’s online appendix repeats the baseline return autocorrelation regres-

sion for daily and weekly returns over four expanding sample periods: 1889-1905,
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Table 19: No Evidence of Pent-up Liquidity

OLS regression in the summer 1889-1902 sample. Dependent variable is daily detrended NYSE
total trading volume, computed as the deviation of log total trading volume per hour from its
1-year moving average.. Tt and Tt are temperature and seasonal temperature in Manhattan on
day t, respectively. Tt serves as an exogenous proxy for a reduction in aggregate liquidity demand
on day t. T̃t ≡ Tt − Tt indicates unseasonal temperature. Dummy variable for hot weather on
previous trading day indicates that the value of unseasonal temperature is above one standard de-
viation: Hott−1 ≡ 1

(
T̃t−1 > σ

(
T̃
))

. Newey-West HAC standard errors with 20 lags are reported
in parentheses. *, **, and *** indicate significance at 10, 5, and 1 percent, respectively.

(1) (2) (3) (4)
T -0.010∗ -0.014∗∗ -0.012∗∗ -0.012∗∗

(0.005) (0.006) (0.005) (0.005)

T -0.075∗∗∗ -0.073∗∗∗ -0.073∗∗∗ -0.073∗∗∗

(0.015) (0.015) (0.015) (0.015)

Volatility 0.402∗∗∗ 0.406∗∗∗ 0.403∗∗∗ 0.403∗∗∗

(0.086) (0.086) (0.086) (0.086)

Hott−1 -0.060∗ -0.097∗∗

(0.035) (0.040)

T × Hott−1 0.016
(0.011)

T̃t−1 -0.000 -0.000
(0.004) (0.004)

T × T̃t−1 0.000
(0.001)

Year FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes
Observations 1,052 1,052 1,052 1,052
Controls are a constant and dummy variables for Friday, Saturday,
and the number of days until next trading day.

1889-1910, 1889-1915, and 1889-1920. The temperature effect on market return

autocorrelation remains statistically significant as the sample end year increases,

although the magnitudes of the coefficients gradually fall as the temperature effect

on liquidity demand diminishes over time.

To measure variation in liquidity demand using temperature variation, it is im-

portant to control for the seasonal variation in temperature within a summer. This

is done using the single seasonal temperature variable, but I demonstrate here that

using seasonal fixed effects produces similar results. The online appendix shows
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that excluding the seasonal temperature variable and instead introducing increas-

ingly fine seasonal fixed effects—from an interval of 30 days to an interval of 3

days—generates similar results on the return autocorrelation regression. Neither

the magnitude nor significance of the estimated effects depends importantly on

the choice of seasonal fixed effects.

The reliance on historical data is both a strength and weakness of this study.

Focusing on the past years allows for the natural experiment exploited by this

study—i.e., aggregate demand for liquidity falls as summer temperature exoge-

nously rises. Nevertheless, the further we go back into time, the less relevant the

results may be to today’s market. Still, there are reasons to believe that studying

the stock market in the late 19th to early 20th century generates insights relevant

to today’s market. First, the microstructure of NYSE attained the modern form

by this time. One critical change occurred further back in 1871, when the trading

mechanism changed from call market to continuous market, allowing trades to

occur asynchronously. Furthermore, as explained in section 7, the classification of

traders into market makers and outside customers as well as the market makers’

special role in providing liquidity were true then as they are now. Finally, the es-

timated effect of trade volume on daily return autocorrelation during the sample

period is similar to that in CGW, implying that liquidity demand per unit of aggre-

gate trade volume was similar in this study’s (1889-1902) and CGW’s (1962-1988)

sample periods.

10. Conclusion

In this paper, I use a natural experiment to study the impact of aggregate liquidity

demand shocks on short-horizon reversals in a stock market index. The natural

experiment I exploit is that, prior to the advancement in temperature control, com-

munication, and transportation technologies, hot summer weather discouraged a

sizable quantity of outside customers from participating in the stock market. I
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find that day-to-day changes in the identified demand for liquidity—likely the

outcome of sentiment or other short-lived motives—lead to changes in the short-

horizon behavior of market returns.

The suggested natural experiment and the unique records of individual stock

returns in 1889-1902 may be used to explore other topics. For example, combin-

ing the individual stock price data based on daily high and low prices with the

temperature proxy for outside investors, one can test theories of bid-ask spreads

or volatilities. This would be possible using the range-based measures of bid-ask

spreads (Corwin and Schultz 2012) and volatility (Alizadeh, Brandt, and Diebold

2002) but is left to future work.
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Chapter III.
The Unlegislated Tax Multiplier



11. Introduction

The tax multiplier study of Romer and Romer (2010) (RR) based on the narrative

approach is influential among researchers and policymakers alike.75 Using pres-

idential and congressional documents to identify “exogenous” tax bills that were

enacted irrespective of the prevailing or anticipated economic conditions, they es-

timate a tax multiplier of three: an exogenous fall in tax by 1 percent of the GDP

raises the GDP in the next three years by approximately 3 percent.

Since a tax multiplier of three is larger than that estimated by most other stud-

ies (e.g., Blanchard and Perotti, 2002; Barro and Redlick, 2011; and Favero and

Giavazzi, 2012), the RR multiplier has come under scrutiny.76 For instance, Cal-

dara and Kamps (2012), Charhour, Schmitt-Grohe and Uribe (2012), Perotti (2012),

and Mertens and Ravn (2014) point to different ways in which the RR estimate

may be biased. We focus on another source of bias, namely that the period in

which exogenous bills are enacted are not truly similar to other times.

Our main contribution is to gauge the reliability of the RR estimate without

having to identify the specific sources of a potential bias a priori. The idea is to es-

timate the RR tax multiplier using unlegislated tax bills that barely failed to pass as

indicated by having passed at least one chamber of the Congress but subsequently

failing to become law (“unlegislated” or “barely failed” from hereon). Since these

unlegislated tax bills should not have a causal effect on the GDP, estimating the

unlegislated tax multiplier allows us to isolate the changes in the GDP due only

to the prevailing or anticipated economic conditions surrounding the passage of

an exogenous tax bill if an eventual passage of a bill that has passed at least one

chamber hinges on a random course of political events.

75For instance, the study was cited in the 2014 Economic Report to the President (CEA, 2014).

76Mountford and Uhlig (2009), however, also find a relatively large multiplier.
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11.1. The kind of biases are we concerned about?

We claimed earlier that even the exogenous tax changes identified by RR may

occur under current and anticipated economic conditions that are different from

other times. Why is this possible?

This happens, for instance, if the popularity of free market policies lead to both

tax cuts and industry deregulation, as it did during the Reagan era. The Reagan

tax cut in 1981 is one of the largest exogenous tax cuts identified by RR, but the tax

cut was complemented by the deregulation of telecommunication, transportation,

finance, and agriculture.77 If both tax cuts and industry deregulation contribute

to GDP growth in the short term, attributing the GDP growth solely to the tax cut

can bias the tax multiplier estimated from this time period upward.78

This bias differs from the one identified in RR and cannot be addressed by

their narrative approach alone. In the motivating example above, even if the tax

cut were exogenous to the economic circumstance, the presence of free market

policies complementing the tax cut would still generate a positive bias caused by

the omitted policy variables. One can deal with this bias by explicitly including

relevant policy variables, but quantifying the magnitudes of policy changes is a

challenge.79

Our study nonetheless is meaningful also as a sanity check for the RR classifica-

tion of tax bills. If following the same classification approach we find normal GDP

movements following proposed tax changes that barely failed to become law, it

77One example is the Federal Communications Commission’s decision to end the de facto
monopoly rights of Western Electric in telecommunication equipment industry in the 1970’s and
1980’s. Olley and Pakes (1996) documents the consequent competition in equipment industry in-
creased the productivity of the equipment industry. This time period coincides with the passage
of a series of tax reforms aimed at long-term economic growth during the Reagan administration.

78A bias in the same direction can also occur based on the expectation that the bill would pass
and affect future GDP growth. We thank Robert Barro for this point.

79Mulligan and Shleifer (2005), Coffrey et al. (2012), Dawson and Seater (2013), and Omar Al-
Ubaydli and Patrick A. McLaughlin (2015) have made progress in quantifying the magnitudes of
regulations.
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would increase the reliability of the classification approach.

11.2. What we find

We find a unlegislated tax multiplier of close to zero, suggesting that tax multiplier

estimates based on legislated tax bills suffer from a selection bias. This result is

fairly robust to the specification of our test.

12. Why are barely failed tax bills useful?

Our methodology is best explained in the potential outcome framework of applied

microeconomics. The output growth is the outcome variable ∆Y, the tax revenue

change is the treatment variable ∆T (for expositional purposes, we suppose ∆T

takes the value of either 1 or 0.), and the passage of the tax revenue change is the

selection variable P. Formally, we can write:

∆Yi = ∆Yi(∆Ti, Pi) + εi (70)

We are interested in how random tax changes affect the outcome growth. For-

mally, this is captured by

γ =E[∆Yi(∆Ti = 1, Pi)− ∆Yi(∆Ti = 0, Pi)] (71)

Romer and Romer (2010) treats both the passage and the tax change as treatment

variable and compares the outcome growth when both the treatment and selection

happen to the output growth when either treatment or selection does not happen.

Formally, this is equivalent to
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γRR =E[∆Yi(∆Ti = 1, Pi = 1)− ∆Yi((∆Ti, Pi) ∈ {(1,0), (0,1), (0,0)})] (72)

This estimate is generally not γ . This paper attemps to rememdy this problem.

To that end, we construct a matching variable P̃i such that it makes P irrelevant

in expectation: E[∆Yi(∆Ti = 1, Pi)|P̃i] = E[∆Yi(∆Ti = 1)|P̃i]. Then,

γCJ = E[∆Yi(∆Ti = 1, Pi)− ∆Yi(∆Ti = 0, Pi)|P̃i]

= E[∆Yi(∆Ti = 1)− ∆Yi(∆Ti = 0)|P̃i]
(73)

Econometrically, we need P̃ that subsumes all the effects from P to ∆Y. For in-

stance, agents can foresee the passage of tax bills as signals of the broad pro-

market stance of the Congress and increase investment. We need a signal that

subsumes this effect. We believe the passage of one chamber of the Congress be a

good candidate for P̃.

13. Data on unlegislated tax changes

To do this study, we need to first identify all tax-related bills that pass at least

one chamber of the Congress but do not eventually become law. Then, for each of

these unlegislated tax bills, we need to find the proposed tax revenue changes.

To identify tax-related bills, we rely on the fact that most tax-related bills se-

riously considered by the Congress have tax revenue estimates provided by the

Joint Committee on Taxation (JCT).80 Hence, we start with the universe of 3,435

documents available on the JCT website from 1975 to 2017. Although these doc-

uments all contain potentially useful information, some of these documents are

80Exceptions are social security tax bills, which may not be considered by the JCT. For these, RR
rely on the Social Security Bulletin and the Annual Report of the Board of Trustees of the Federal
Old Age and Survivors Insurance Trust Fund to obtain the bill information as well as revenue
estimates. We exclude social security tax bills for now.
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tax comparison studies and technical studies of tax rules that contain no infor-

mation about tax revenue changes. Since it is impractical to go through all 3,435

documents to identify tax-related bills with revenue estimates, we take a short cut.

Our short cut is to read only the documents associated with bills classified as

tax bills by Congress.gov, the website for U.S. federal legislative information. We

do this based on the assumption that the bills that are not classified as primar-

ily a tax bill by Congress.gov are associated with smaller tax revenue changes.

Congress.gov has the universe of over million bills from 1975 to 2017, and it cat-

egorizes 25544 bills (of which, 144 are enacted) as tax bills. We then match the

25544 taxation bills to the titles of the JCT documents to obtain 575 JCT docu-

ments related to the bills. From the 575 JCT documents, we manually collect the

revenue estimates for 188 tax bills.

The JCT revenue estimates contain the estimated changes in the tax revenues for

1 to 8 years following the tax change. We then extract the “surprise” component of

the tax revenue changes by taking the component of the tax revenue change that is

different from the 1-year future value of the prior year’s tax revenue change, where

future value is calculated using the 1-year Treasury nominal rate. For instance,

suppose the JCT document states that the proposed tax cut in year t is expected

to reduce tax revenues by $5 billion in year t + 1, $8 billion in year t + 2, and $9

billion in year t + 3. If the realized Treasury rates are indicated by i, then the tax

revenue surprises are taken as −$5 billion in year t + 1, −$8+ (1 + it+1)$5 in year

t + 2, and −$9 + (1 + it+2)$8 in year t + 3.81

To replicate the RR procedure, in addition to collecting tax revenue estimates,

we also need to determine whether each bill is exogenous or endogenous to the

prevailing economic conditions. To do this, we read the bill texts and the Economic

Report of the President to determine whether each of those 188 bills are exogenous

81The 1-year rate is downloaded from the Board of Governors of the Federal Reserve System,
series H15/H15/RIFLGFCY01_N.B, on 5/4/2017.
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in the RR sense.82 Out of those 188, we found 74 exogenous bills that pass one

chamber of the Congress but fail to be enacted. Five of them get re-introduced

in later periods, so we drop them. In total, we have the revenue estimates for 69

exogenous tax bills that barely fail.

For analyses, we need economic variables. Since the GDP growth rate will be

the dependent variable in most regressions, we download the nominal GDP and

price index data from the Bureau of Labor Statistics.83 Using GDP and price index

P, we compute the GDP growth rate Y as

∆Yt = ln
(

GDPt

Pt

)
− ln

(
GDPt−1

Pt−1

)
(74)

We also normalize all of our tax revenue surprises through a division by GDP.

That is, after computing the total exogenously proposed tax revenue surprise in

year t, ∆TRt, we compute our proposed tax change variable ∆τt as

∆τt =
∆TRt

GDPt

which is valid since both ∆TRt and GDPt are nominal quantities. The time series

of unlegislated exogenous tax changes, ∆τt, is plotted in Figure 1a.

For comparison, we also plot the time series of legislated exogenous tax changes,

which we denote by ∆Tt in the rest of the paper, in Figure 1b. For years 1978-2007,

this series is simply taken from RR. For the years 2008-2016, we repeat the RR

classification for the legislated tax bills to identify exogenous tax changes. The

two series have a correlation of 0.21.

82RR categorize the motivation for tax changes into four: long-term economic growth, inherited
deficit concerns, match increase government spending, and countercyclical tax changes. The first
two are taken as exogenous motivations, and the last two are endogennous motivations. So far,
the authors divided up this task, but we plan to cross-check our classifications by first individually
classifying all tax bills and then comparing our classifications with each other. We will then jointly
determine the classifications of the bills for which we classified differently.

83GDP and price index data are respectively downloaded from the National Income and Product
Accounts, Table 1.1.5 and 1.1.4, on 5/2/2017.
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Table 20: Determinants of the Enactment of an Exogenous Tax Bill
Point estimate (β) Robust Standard Error

Contentious House 0.53 (0.35)
Contentious Senate −0.77 (0.31)

Party in Power 0.04 (0.09)
∆Yt−1 (%) −0.02 (0.04)
∆Yt−2 (%) 0.02 (0.03)
Intercept 0.47 (0.18)

N 103
Adjusted R2 0.05

13.1. Do the legislated and unlegislated tax changes occur in

similar political and economic conditions?

Before using exogenous but unlegislated tax changes as the control group in a tax

multiplier study, it is useful to know whether the chance of an exogenous tax bill

becoming law conditional on having passed one chamber of the Congress is close

to random. Hence, we use a linear discrete choice model to study what determines

the chance of a bill becoming a law:

1 (bill i becomes a law|passed one chamber) = Xiβ

where Xi comprises the following political and economic variables: contentious

House (margin of majority in the House less than 5%), contentious Senate (margin

of majority in the Senate less than 5%), party in power (House majority, Senate

majority, and the President are from the same party), GDP growth in the previous

year, and GDP growth two years prior. We use OLS to run the regression.84

Table 1 reports the results. To interpret the point estimates, a more contentious

Senate has a marginally signifcant effect in lowering the chance of a bill passing. It

84Using a logit model gives similar results.
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Figure 14: Unlegislated vs. Legislated Exogenous Tax Changes, 1975-2016
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(a) Tax Bills on Congress.gov (b) JCT Documents

Figure 15: Number of Tax Bills on Congress.gov vs. Number of Joint Committee
on Taxation (JCT) Documents by Decade

is, however, counterintuitive that a more contentious House increases the chance

of a bill passing, although the effect is not significant. When single party is in

power, the chance of a bill passing increases but not meaningfully. Lagged GDP

growth rates do not seem to have meaningful effects.

13.2. A note about the incomplete data collection process

A prominent feature of the time-series of tax changes, plotted in Figure 1a, is

that tax changes are completely missing in the 1980s and early 1990s. This is not

because of a lack of tax bills in the 1980s but because of a classification issue on

the Congress.gov website.

In Figure 2, we plot the number of bills classified as tax bills on Congress.gov

as well as the number of Joint Committee on Taxation documents. Looking at

Figure 2a, we see that very few bills were classified as tax bills in the 1970s and

1980s. This is not because there were few tax-related bills legislated. Figure 2b

shows that 1970s had a large number of bills with tax revenue consequences. The

problem seems to be that the Congress.gov website has classified a large fraction
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of tax-related bills in the 1980s as “economics and public finance” bills.

This problem of missing 1980s data will be resolved in our future work as we

plan to manually go through all JCT documents. The current draft, however, will

suffer from the lack of tax bills from the period. Later on, we try excluding the

pre-1995 years altogether to assess the sensitivity of our results to sample selection.

14. The legislated tax multiplier

RR estimates the tax multiplier using quarterly data over 1950 to 2007. In com-

parison, the unlegislated tax change data we collect are annual over 1978 to 2016.

Hence, for the purpose of comparison, we replicate the results in RR using the

same annual frequency over the period 1978 to 2016.

14.1. Using quarterly data

To do this, we use the sample period 1950-2007 to estimate

∆Yt = a +
M

∑
i=0

bi∆Tt−i + trendt + ei, (75)

where M=12.85 Following RR, we also try including lagged GDP growth rates to

run

∆Yt = a +
M

∑
i=0

bi∆Tt−i +
N

∑
j=1

cj∆Yt−j + trendt + ei, (76)

where N = 11 to keep the same sample period.86

The resulting impulse responses of GDP following a 1 percentage point increase

in the tax revenue as a fraction of GDP along with the one-standard-deviation con-

85Although RR do not include a time trend, but we include it to control for the fact that GDP
growth slows down slowly over the long horizon.

86There is also a third specification based on VAR, which we do not do.
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Figure 16: Estimated Impact of A Legislated, “Exogenous” Tax Increase of 1 Per-
centage of GDP (quarterly over 1950.1-2007.4)

fidence intervals are plotted in Figure 3.87 The implied tax multiplier is between

2 and 3.

14.2. Using annual data

How do the results change if we use the original sample period but use annualized

data? To do this, we sum across the tax revenue changes over different quarters

within the same year. Then, we estimate the annualized versions of (75) and (76):

∆Yt = a + ∑N
i=0 bi∆Tt−i + trendt + ei,

∆Yt = a + ∑N
i=0 bi∆Tt−i + ∑N

j=1 cj∆Yt−j + trendt + ei

(77)

over the sample period 1951-2007 where N = 3.

The impulse responses are plotted in Figures 4a and 4b. Both figures show that

the tax multiplier identified with the annaulized data is around 2.

87The variance of the impulse response is calculated based on 10,000 random draws from a
multivariate normal distribution with the mean and variance equal to the point estimates and the
variance-covariance matrix of the parameter estimates. We do not assume serial correlation in the
residuals.
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Figure 17: Estimated Impact of A Legislated, “Exogenous” Tax Increase of 1 Per-
centage of GDP (annual over different periods)
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Our collected data have tax revenue information beginning 1975. Hence, to

allow for three lagged values, we need to use the annual sample of 1978 to 2016.

Here, for comparison, we use the same sample period and the annual frequency

to estimate the RR tax multiplier.

Figures 4c and 4d report the impulse responses estimated using the two models.

As before, the cumulative GDP response is the largest by the second year, although

the rebound is more prominent starting the third year. The bottom line, however,

is that the RR tax multiplier is around 2 when using the annual frequency.

15. The unlegislated tax multiplier

Now we estimate the unlegislated tax multiplier using tax changes that would

have occurred had the tax bills passed. Since the bills did not actually pass, the

resulting multiplier should reflect only the prevailing and anticipated economic

conditions surrounding those bills without the interference of the causal effect of

tax changes on the GDP.

15.1. Baseline estimate

Specifically, we use the sample period 1978-2016 to estimate the two models,

∆Yt = a + ∑N
i=0 bi∆τt−i + trendt + ei,

∆Yt = a + ∑N
i=0 bi∆τt−i + ∑N

j=1 cj∆Yt−j + trendt + ei

(78)

where ∆τ measures the unlegislated tax changes. Again, the lag N is 3 years.

The estimates under both assumptions (Figures 5a and 5b) show that we cannot

reject the null that the unlegislated tax multiplier is zero. When the lagged GDP

growth rates are controlled for, however, the point estimate of the unlegislated tax

multiplier is positive and slightly above one.
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Figure 18: Estimated Impact of A Unlegislated, “Exogenous” Tax Increase of 1
Percentage of GDP (annual over 1978-2016)

15.2. Robustness checks

Can we reliably conclude that the unlegislated tax multiplier is zero? Given that

our data collection has focused mainly on 1995-2016, it may be premature to con-

clude one way or the other. Here, however, I check whether the result is driven

by other factors. Hence, we check whether including current and lagged (up to

3 years) legislated tax changes, including current and lagged (up to 3 years) gov-

ernment spending, excluding the two crisis years of 2008 and 2009 (with the use

of a dummy variable), or using only the years with reliable data (1995-2016, time

trend excluded since the sample period is now short) changes anything.88

Figure 6 reports the results. Controlling for legislated tax changes or excluding

the crisis years do not strongly affect the result. Controlling for government spend-

ing associates a unlegislated tax increase with an increase in the GDP growth rate.

In contrast, excluding the years 1978-1994 associates a unlegislated tax increase

with a slight decrease in the GDP growth rate. There is, however, no conclusive

evidence that the unlegislated tax multiplier is either positive or negative.

88Government spending is computed as the federal total gross expenditure minus interest pay-
ments. The data are downloaded from the National Income and Product Accounts (Table 3.2) on
5/3/2017. The government spending is then normalized by the nominal GDP.
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Figure 19: Estimated Impact of A Unlegislated, “Exogenous” Tax Increase of 1
Percentage of GDP (annual over 1978-2016)
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16. Conclusion

In this paper, we examined the growth of GDP following proposed tax changes

that barely failed to become law. Although our data collection is incomplete, we

at this point find that those tax changes are not associated with GDP movements

substantially different from normal times. This increases the reliability of the tax

multipliers estimated using legislated tax bills.

Although we focus on the Romer-Romer (2010) study of tax multiplier, our

method is also relevant to studies that use legislated bills to assess the govern-

ment spending multiplier (e.g. Ramey and Shapiro, 1998; Ramey, 2011; and Barro

and Redlick, 2011). A priori, we do not know whether the bias will be zero in

government spending study. Future studies with our method of using “barely

failed” bills as the counterfactual is warranted to assess the potential bias.
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Chapter IV.
Appendix to Chapter I



A. Model appendix

A.1. Proofs of lemmas and propositions

Before proving Lemma 1, I establish the following argument made in the body of

the text:

Remark 2. The following is true about anomaly assets at t = 1:

(i) All anomaly assets “exploited” by arbitrageurs have the same returns.

(ii) There exists a marginal anomaly asset j∗1 ∈ [0,1] such that asset j is exploited if

and only if j ∈ [j∗1 ,1].

(iii) All exploited assets generate return rj∗1 , the expected return earned by asset j∗1

in the absence of arbitrageurs.

Proof. (i) Suppose otherwise. Then we can find two exploited assets j′ and j′′ such

that

E1rj′,2 < E1rj′′,2

But in this case, a risk-neutral arbitrageur can increase its expected portfolio

return by reducing its dollar position on j′′ by dxj′′,1 and using it to increase

its position on j′ by dxj′,1 = pj′,1p−1
j′′,1dxj′′,1.

To see (ii) and (iii), note that there must be some j∗ ∈ [0,1] such that the equal

expected return earned by all exploited assets is rj∗1 . It suffces to show that

asset j is exploited if and only if j ∈ [j∗1 ,1]. Suppose first that j ∈ (j∗1 ,1] but is

not exploited. Then, since j earns an expected return,

E1rj,2 = rj > rj∗1

so that arbitrageurs are not optimizing. Now suppose j ∈ [0, j∗1). Then since
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its demand by behavioral investors, given expected return rj∗1 , is

Bj,t = j∗1 − j < 0,

the market does not clear if arbitrageurs take a long position on the asset.

Proof of Lemma 1 (Equilibrium price at time t = 1). Trivially, if k1 ≤ 0, behavioral

investors price all assets to ensure

E1
[
rj,2
]
=

v
pj,1

= 1 + rj,

which implies

pj,1 =
v

1 + rj

Next, suppose k1 ≥ 0 but arbitrageurs cannot remove all mispricings. Then, by

Lemma 1, there exists j∗1 ∈ (0,1) such that arbitrageurs exploit assets if and only if

j ∈ [j∗1 ,1] and earn the expected return

E1rj,2 = rj∗1

from them. Then, behavioral investor demand for each asset j ∈ [j∗1 ,1] is

Bj,t = j∗1 − j

in dollar position. Thus, for the market to clear, arbitrageur’s demand for the asset

needs to be xj,1 = j∗1 − j. Integrating this over [j∗1 ,1] should equal total arbitrageur

capital, so that ∫ 1

j∗1
(j− j∗1)dj = µk1
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This gives89

j∗1 = 1−
√

2µk1

and

pj,1 =
v

1 + rj∗1

On the other hand, unexploited assets are priced by behavioral investors so that

for all j ∈ [0, j∗1 ] ,

pj,1 =
v

1 + rj

Finally, suppose arbitrageurs are unconstrained; that is, µk1 ≥ 1/2. Then, all

anomaly assets are fully exploited so that

pj,1 = v

for all j ∈ [0,1].

Proof of Lemma 2 (Anomaly asset’s endogenous risk). The negative covariance

follows from the fact that

∂Λ1

∂pj,1
=

∂Λ1/∂k1

∂pj,1/∂k1
=
− or 0
+ or 0

≤ 0

(i) Suppose µ→ 0+. Then, k1→ 0+ so that ψ1 = 1 + r and pj,1 = v/ (1 + rj).

Since both are deterministic,

lim
µ→0

Cov0
(

pj,1,Λ1
)
= 0

89Note that the other root is ruled out since it is always greater than 1, the largest possible value
of j∗1 .
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(ii) Note that

∂Cov0
(

pj,1,Λ1
)

∂ (rj)
=

∂Cov0(pj,1,Λ1)
∂j

∂(rj)
∂j

=
1
r
×

∂Cov0
(

pj,1,Λ1
)

∂j

Now, since Cov0
(

pj,1,Λ1
)
= E0

[
Λ1pj,1

]
− E0 [Λ1]E0

[
pj,1
]
,

Cov0
(

pj,1,Λ1
)
= v

∫ 0

−∞

1 + c
1 + rj

dF (k1) + v
∫ k1(j)

0

1 + rj∗1
1 + rj

dF (k1) + v
∫ ∞

k1(j)
dF (k1)

−vE0 [Λ1] (
∫ 0

−∞

1
1 + rj

dF (k1) + v
∫ k1(j)

0

1
1 + rj

dF (k1) + v
∫ 1/2

k1(j)

1
1 + rj∗1

dF (k1)

+v
∫ ∞

1/2
dF (k1)),

where k1 (j) is the value of k1 that gives j as the marginal asset, and F is

the conditional cumulative density funtion of k1. Thus, the derivative of the

covariance with respect to j gives

∂Cov0
(

pj,1,Λ1
)

∂j
= −v

(∫ 0

−∞

(1 + c) r

(1 + rj)2 dF (k1) +
∫ k1(j)

0

(1 + rj∗1) r

(1 + rj)2 dF (k1)

)

+E0 [Λ1]v

(∫ 0

−∞

r

(1 + rj)2 dF (k1) +
∫ k1(j)

0

r

(1 + rj)2 dF (k1)

)
,

where the Leibniz terms cancel out by the fact that j∗1 (K1 (j)) = j. Rearrang-

ing terms gives

∂Cov0
(

pj,1,Λ1
)

∂j
= − vr

(1 + rj)2

(∫ k1(j)

−∞
Λ1dF (k1)− E0 [Λ1]

∫ k1(j)

−∞
dF (k1)

)

= − vr

(1 + rj)2 (E0 [Λ1|j < j∗1 ]− E0 [Λ1])F (k1 (j))

< 0,

since E0 [Λ1|j < j∗1 ] > E0 [Λ1].
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Lemma 3. (Monotonicity of prices at t = 0). For any j′ < j′′ such that j′, j′′ ∈ [0,1],

pj′,0 ≥ pj′′,0

Proof. Suppose for a contradiction that j′ < j′′ but pj′,0 < pj′′,0. Suppose also that

j′′ is priced by aribtrageurs so that

pj′′,0 = E0

[
Λ1

Λ0
pj′′,1

]

Since pj′,1 ≥ pj′′,1 in all states of t = 1, it must be that

pj′,0 ≥ E0

[
Λ1

Λ0
pj′,1

]
≥ E0

[
Λ1

Λ0
pj′′,1

]

which is a contradiction. Now suppose that j′′ is priced by behavioral in-

vestors so that

pj′′,0 =
1

1 + rj′′
E0

[
pj′′,1

]
Since pj′,1 ≥ pj′′,1 in all states of t = 1, it must be that

pj′,0 ≥
1

1 + rj′
E0

[
pj′,1

]
≥ 1

1 + rj′′
E0

[
pj′′,1

]

which is also a contradiction.

Proof of Proposition 1 (“Alphas” turn into “betas”). Suppose j < j′. Then, by

Lemma 2, −Cov0
(

pj,1,Λ1
)
>−Cov0

(
pj′,1,Λ1

)
. Furthermore, by Lemma 3 in

the Appendix, pj,0 < pj′,0. Thus, β j = −Cov0
(
Λ1/Λ0,rj,1

)
/Var0 (Λ1/Λ0) >

−Cov0

(
Λ1/Λ0,rj′,1

)
/Var0 (Λ1/Λ0) = β j′ .
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Proof of Proposition 2 (Beta is explained by anomaly-specific arbitrage capital).

Recall that arbitrageur position on j is xj,1 = j− j∗1 . Hence, the unconditional

expectation of arbitrageur position is E0xj,1 = j−E0 [j∗1 ]. Thus, ∂β j/∂E0
[
xj,1
]
=(

∂β j/∂j
)
×
(
∂j/∂E0

[
xj,1
])

= ∂β j/∂j > 0.

A.2. Endogenizing the demand curves of behavioral investors

Suppose that each behavioral investor i believes the state variable underlying the

cash flow at t = 2 follows

vj,t+1 =
1
φi

vj,t + ε j,t+1 (79)

Asset j has unique set of behavioral investors whose total mass equals one and

whose beliefs are distributed according to

Fj (φi) ∼U
[

1 + r
(

j− 1
θ

)
,1 + r

(
j +

1
θ

)]
(80)

These behavioral investors, like arbitrageurs, cannot trade on margin. Then, given

price pj,t and the expectation that price at t+ 1 is pj,t+1 = a+ vj,t+1, the net demand

for asset j by behavioral investors is

Dj,t =
θ

2r

(∫ vj,t/pj,t

1+r(j− 1
θ )

di−
∫ 1+r(j+ 1

θ )

vj,t/pj,t

di

)
(81)

which implies the demand of

Dj,t = θ

(
Etrj,t+1

r
− j
)

(82)

For behavioral investors at t = 1, this demand curve is the exact dollar position

on j demanded by them, since they expect pj,2 = vj,2 = vj,1 + ε j,2. For behavioral
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investors at t = 0, however, price at t = 1 is not necessarily expected to be linear in

vj,1. Still, if they perceive the price at t = 1 to be approximtely linear in vj,1 so that

pj,1 ≈ a + bvj,1, then the demand curve is

Dj,0 = θ

(
b

Etrj,t+1

r
− j +

b
r
− 1
)

(83)

which is analytically identical to (82) for the purpose of this paper’s model.
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B. Empirical appendix

B.1. GMM formulations

Latent mispricing predicts funding beta

Consider the following data-generating process. In the pre-93 period, long-short

return is a noisy realization of latent mispricing:

rj,t = r̄pre
j + εj,t (84)

This latent mispricing determines the exposure of an anomaly asset to a funding

shock:

β
post
j = b0 + b1r̄pre

j + ηj (85)

where ηj has a cross-sectional mean of zero. This beta then determines the long-

short return in the post-93 period:

rj,t = apost
j + β

post
j ft + εj,t (86)

These conditions imply the following 4J moment conditions:

g4J×1 (b) =



E
[(

rj,t − r̄pre
j

)
1 (t ∈ Pre)

]
E
[(

rj,t − apost
j − β

post
j ft

)
1 (t ∈ Post)

]
E
[(

rj,t − apost
j − β

post
j ft

)
ft1 (t ∈ Post)

]
E
[(

β
post
j − b0 − b1rj,t

)
1 (t ∈ Pre)

]


, (87)
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where the parameter vector is b= [ r̄pre
1 · · · r̄pre

J apost
1 · · · apost

J β
post
1 · · · β

post
J

· · · β
post
J b0 b1]

′ . At each t, the errors are,

gt (b) =



ε1,t1 (t ∈ Pre)
...

εJ,t1 (t ∈ Pre)

ε1,t1 (t ∈ Post)
...

εJ,t1 (t ∈ Post)

ε1,t ft1 (t ∈ Post)
...

εJ,t ft1 (t ∈ Post)

(ε1,t + η1)1 (t ∈ Pre)
...

(εJ,t + ηJ)1 (t ∈ Pre)



(88)

Note that the errors εj,t represent the error in estimating the true latent mispricing

r̄pre and the errors ηj represent the error in predicting post-93 beta using true r̄pre.

Since the errors εj,t are explicitly included in the last set of J moments, this GMM

formulation takes into account the generated regressor problem for r̄pre
j .

Since the last J moments represent errors in the cross-sectional regression (33),

they require an expectation taken in the cross-section of anomaly assets. Hence, I

use the following selection matrix to take a cross-sectional expectation:

A(3J+2)×4J =


I3J×3J 03J×J

01×3J 11×J

01×3J r̄′1×J

 (89)

where r̄ is a J× 1 vector of pre-93 lont-short returns. Then, the estimation problem
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is to choose b̂ to set

Agt

(
b̂
)
= 0(3J+2)×1 (90)

or, equivalently, to minimize the sum of squared moments:

b̂(3J+2)×1 = argmin
{
(Agt)

′
1×(3J+2) (Agt)(3J+2)×1

}
(91)

Under this formulation, the parameter estimates will be identical to those de-

rived from sequential OLS estimates of (84), (85), and (86). In particular, the last

two rows of the selection matrix generate two moment conditions of the OLS es-

timation of (33). To see this, note that the vector of 1s in the right middle block of

the selection matrix gives

0 = ET [ε1,t + η1] + ... + ET [εJ,t + ηJ ]

= ET

[
β

post
1 − b0 − b1r1,t

]
+ ... + ET

[
β

post
J − b0 − b1rJ,t

]
⇔ 0 = ∑J

j=1

(
β

post
j − b0 − b1ET

[
rj,t
])

⇔ 0 = EJ

[
β

post
j − b0 − b1ET

[
rj,t
]]

(92)

Analogously, the right lower block of the selection matrix implies

0 = EJ

[(
β

post
j − b0 − b1ET

[
rj,t
])

ET
[
rj,t
]]

(93)

This shows that the last two rows of the selection matrix ensures that the cross-

sectional regression has the same moments implied by the OLS implementation

of it.

The spectral density for the moments is

S4J×4J =
∞

∑
τ=−∞

E
[
gt (b) gt−τ (b)

′] , (94)

147



which I estimate assuming no serial correlation:

ST = ET
[
gt (b) gt (b)

′] (95)

Hansen (1982) shows that

√
T
(

b̂− b
)
→ N

[
0, (Ad)−1 ASA′

(
(Ad)−1

)′]
, (96)

where d is a matrix representing the sensitivity of moments with respect to pa-

rameter values:

d4J×(3J+2) =
∂gT (b)

∂b′
(97)

Hence,

var
(

b̂
)
=

1
T
(Ad)−1 ASA′

(
(Ad)−1

)′
(98)

Adding pre-93 beta as another regressor

These conditions imply the following 6J moment conditions:

g6J×1 (b) =



E
[(

rj,t − r̄pre
j

)
1 (t ∈ Pre)

]
E
[(

rj,t − apost
j − β

post
j ft

)
1 (t ∈ Post)

]
E
[(

rj,t − apost
j − β

post
j ft

)
ft1 (t ∈ Post)

]
E
[(

rj,t − apre
j − β

pre
j ft

)
1 (t ∈ Pre)

]
E
[(

rj,t − apre
j − β

pre
j ft

)
ft1 (t ∈ Pre)

]
E
[(

β
post
j − b0 − b1rj,t − b2β

pre
j

)
1 (t ∈ Pre)

]


(99)
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The selection matrix is

A(5J+3)×6J =



I5J×5J 05J×J

01×5J 11×J

01×5J r̄′1×J

01×5J βpre
1×J


(100)

The formulae for spectral density S, the matrix d, and the covariance of estimates

are analogous to those in the previous analysis.

Adding pre-93 volatility as another regressor

These conditions imply the following 6J moment conditions:

g5J×1 (b) =



E
[(

rj,t − r̄pre
j

)
1 (t ∈ Pre)

]
E
[(

rj,t − apost
j − β

post
j ft

)
1 (t ∈ Post)

]
E
[(

rj,t − apost
j − β

post
j ft

)
ft1 (t ∈ Post)

]
E
[(

T/2
T/2−1

(
rj,t − rpre

j

)2
−
(

σ
pre
j

)2
)

1 (t ∈ Pre)
]

E
[(

β
post
j − b0 − b1rj,t − b2σ

pre
j

)
1 (t ∈ Pre)

]


(101)

The selection matrix is

A(4J+3)×5J =



I4J×4J 04J×J

01×4J 11×J

01×4J r̄′1×J

01×4J σpre
1×J


(102)

The formulae for spectral density S, the matrix d, and the covariance of estimates

are analogous to those in the previous analysis.
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Latent mispricing predicts the rate of increase in funding beta

I assume the following data-generating process in which an exposure to arbi-

trageur funding grows at the rate β
post
j,1 t−1, where t is the number of quarters into

the post-93 sample (1994Q1 being t = 1):

Pre-93 return: rj,t = r̄pre
j + εj,t

Post-93 return: rj,t = apost
j +

(
β

post
j,0 + β

post
j,1 ln (t)

)
ft + εj,t

Beta determination: β
post
j,1 = b0 + b1r̄pre + ηj

(103)

Here, β
post
j,1 indicates the growth of funding beta due to growth of arbitrageur

mass over time (µ in the model). The moment conditions are now

g5J×1 (b) =



E
[(

rj,t − rpre
j

)
1 (t ∈ Pre)

]
E
[(

rj,t − apost
j − β

post
j,0 ft − β

post
j,1 ln (t) ft

)
1 (t ∈ Post)

]
E
[(

rj,t − apost
j − β

post
j,0 ft − β

post
j,1 ln (t) ft

)
ft1 (t ∈ Post)

]
E
[(

rj,t − apost
j − β

post
j,0 ft − β

post
j,1 ln (t) ft

)
ln (t) ft1 (t ∈ Post)

]
E
[

β
post
j,1 − b0 − b1rj,t

]
1 (t ∈ Pre)


(104)
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The parameter vector is

b(4J+2)×1 =



r̄pre
1
...

r̄pre
J

apost
1
...

apost
J

β
post
1,0
...

β
post
J,0

β
post
1,1
...

β
post
J,1

b0

b1



(105)

The selection matrix is

A(4J+2)×5J =


I4J×4J 04J×J

01×4J 11×J

01×4J r̄′1×J

 (106)

The formulae for spectral density S, the matrix d, and the covariance of estimates

are analogous to those in the previous analysis.
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Latent mispricing predicts funding correlation

The data-generating process here is assumed to be identical to that of the latent

mispricing to funding beta regression. The moment conditions are

g(5J+2)×1 (b) =



E
[(

rj,t − rpre
j

)
1 (t ∈ Pre)

]
E
[(

rj,t − rpost
j

)
1 (t ∈ Post)

]
E
[(

T/2
T/2−1

(
rj,t − rpost

j

)2
−
(

σ
post
j

)2
)

1 (t ∈ Post)
]

E
[(

ft − f̄ post)1 (t ∈ Post)
]

E
[(

T/2
T/2−1

(
ft − f̄ post)2 −

(
σ

post
f

)2
)

1 (t ∈ Post)
]

E
[(

T/2
T/2−1

(
rj,t − rpost

j

)(
ft − f̄ post)− σj, f

)
1 (t ∈ Post)

]
E
[

σ
post
j, f

(
σ

post
j

)−1(
σ

post
f

)−1
− b0 − b1rj,t

]
1 (t ∈ Pre)



(107)

152



where T/2 is the number of periods in each subsample. The parameter vector is

b(4J+4)×1 =



r̄pre
1
...

r̄pre
J

r̄post
1
...

r̄post
J

σ
post
1
...

σ
post
J

f̄ post

σ
post
f

σ
post
1, f
...

σ
post
J, f

b0

b1



(108)

The selection matrix is

A(4J+4)×(5J+2) =


I(4J+2)×(4J+2) 0(4J+2)×J

01×(4J+2) 11×J

01×(4J+2) r̄′1×J

 (109)
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“Intermediary asset pricing” of anomaly assets based on endogenous risks

The moment conditions for the cross-sectional test are the conditions for estimat-

ing βs in the time series and the conditions for estimating λs in the cross section:

g (b) =


E
[
rj,t − aj − β j ft

]
E
[(

rj,t − aj − β j ft
)

ft
]

E
[
rj,t − λ0 − λ1β j

]
 (110)

This vector represents (2 + K) J moment conditions. To obtain OLS coefficients, I

use the selection matrix

A =


I(J+JK)×(J+JK) 0(J+JK)×J

01×(J+JK) 11×J

0K×(J+JK) β′K×J

 (111)

where 11×J is a vertical vector of ones and β is a J by K matrix of βs.

I compute two types of stadard errors. I compute Shanken standard errors un-

der the assumption of zero autocorrelations and zero cross-anomaly correlations.

Hence, I take the panel of residuals from the time-series regressions for betas,

εt = rt − β ft (112)

where rt and β are vertical vectors of different anomaly assets’ returns and betas,

respectively. Then, the variance of the price of risk is computed as

Var
(
λ̂
)
=

1
T

[
Σ f +

(
β′β
)−1

β′Σβ
(

β′β
)−1

(
1 + λ′Σ−1

f λ
)]

(113)
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where

Σ = diag

(
T

∑
t=1

εtε
′
t

)
(114)

GMM standard errors are estimated in the standard way, which allows the errors

to be correlated in the cross-section.

Funding betas are formed during constrained times

Here, I test whether pre-93 mean return predicts post-93 change in beta from

unconstrained to constrained times. The moment conditions are,

g6J×1 (b) =



E
[(

rj,t − rpre
j

)
1 (t ∈ Pre)

]
E
[(

rj,t −
(

apost
j,0 + β

post
j,0 ft

))
1 (t ∈ Post,Unconstrained)

]
E
[(

rj,t −
(

apost
j,0 + β

post
j,0 ft

))
ft1 (t ∈ Post,Unconstrained)

]
E
[(

rj,t −
(

apost
j,0 + ∆apost

j +
(

β
post
j,0 + ∆β

post
j

)
ft

))
1 (t ∈ Post,Constrained)

]
E
[(

rj,t −
(

apost
j,0 + ∆apost

j +
(

β
post
j,0 + ∆β

post
j

)
ft

))
ft1 (t ∈ Post,Constrained)

]
E
[(

∆β
post
j − b0 − b1rj,t

)
1 (t ∈ Pre)

]


(115)

To obtain OLS coefficients, I use the selection matrix

A =


I5J×5J 05J×J

01×5J 11×J

01×5J r̄′1×J

 (116)

Testing if r̄pre
j predicts β

post
j,0 or ∆apost

j just requires changing the last moment con-

dition.

B.2. Constructing the anomaly assets

See the online appendix.
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